Design Approach Developed for New Catalysts for Energy Conversion and Storage
March 22, 2018 | Northwestern UniversityEstimated reading time: 2 minutes
Northwestern University researchers have discovered a new approach for creating important new catalysts to aid in clean energy conversion and storage. The design method also has the potential to impact the discovery of new optical and data storage materials, catalysts that impact pharmaceutical synthesis and catalysts that allow for higher efficiency processing of petroleum products at much lower cost.
Scientists are continually seeking new materials to catalyze (accelerate) the chemical reactions and processes required to create a broad range of products. Identifying and creating a catalyst is complex, especially as the potential number of materials, defined by composition and particle size and shape, is overwhelming.
In this study, researchers looked at the challenges of improving affordability and catalyst efficiency in the conversion and storage of clean energy. Currently, platinum-based (Pt) catalysts are the most effective and commonly used to facilitate a hydrogen evolution reaction (HER), which is, in part, the basis for how fuel cells are used to generate energy. However, as platinum is rare and costly, scientists have been seeking more affordable and efficient alternatives.
“We combined theory, a powerful new tool for synthesizing nanoparticles and more than one metallic element — in this case, an alloy consisting of platinum, copper and gold — to create a catalyst that is seven times more active than state-of-the-art commercial platinum,” said Chad A. Mirkin, the George B. Rathmann Professor of Chemistry in the Weinberg College of Arts and Sciences and the director of the International Institute for Nanotechnology at Northwestern.
The study, published online this week by the Proceedings of the National Academy of Sciences (PNAS), was co-authored by Mirkin; Chris Wolverton, the Jerome B. Cohen Professor of Materials Science and Engineering in Northwestern’s McCormick School of Engineering; and Yijin Kang, an electrochemist and visiting professor from the University of Electronic Science and Technology in China.
Specifically, researchers utilized scanning probe block copolymer lithography (SPBCL), along with density-functional theory (DFT) codes, to design and synthesize the HER catalyst. Invented in Mirkin’s lab at Northwestern, SPBCL enables scientists to control the growth and composition of individual nanoparticles patterned on a surface. The DFT codes outline the structural, magnetic and electronic properties of molecules, materials and defects.
“In addition to providing a new way to catalyze the HER reaction, the paper highlights a novel approach for making and discovering new particle catalysts for almost any industrially important process,” Wolverton said.
This may include providing a clear path to new high-temperature superconductors; structures useful in data storage; materials for solar energy conversion nanostructures to move light around at the tiniest of scales; and new catalysts for converting low-value (affordable) chemicals into high-value products, such as pharmaceuticals and pharmaceutical precursors.
Identifying new materials is essential for driving technological development. The global catalysis market is expected to reach $34.3 billion in the next six years, according to a report by Grand View Research, Inc.
“To find best-in-class materials that drive any application of interest, we need to identify ways to reduce the number of possibilities that will be studied and increase the rate at which they can be explored,” Kang said.
“This combination of theory and nanoscale particle synthesis begins to take on that challenge,” said Mirkin, who also is a professor at McCormick.
The study is titled “Catalyst design by scanning probe block copolymer lithography.”
Lilang Huang and Peng-Cheng Chen are first authors of the study.
-Sheryl Cash, associate director of marketing and communications at Northwestern’s International Institute for Nanotechnology, is the author of this story.
Testimonial
"We’re proud to call I-Connect007 a trusted partner. Their innovative approach and industry insight made our podcast collaboration a success by connecting us with the right audience and delivering real results."
Julia McCaffrey - NCAB GroupSuggested Items
Trouble in Your Tank: Implementing Direct Metallization in Advanced Substrate Packaging
09/15/2025 | Michael Carano -- Column: Trouble in Your TankDirect metallization systems based on conductive graphite are gaining popularity throughout the world. The environmental and productivity gains achievable with this process are outstanding. Direct metallization reduces the costs of compliance, waste treatment, and legal issues related to chemical exposure. A graphite-based direct plate system has been devised to address these needs.
Closing the Loop on PCB Etching Waste
09/09/2025 | Shawn Stone, IECAs the PCB industry continues its push toward greener, more cost-efficient operations, Sigma Engineering’s Mecer System offers a comprehensive solution to two of the industry’s most persistent pain points: etchant consumption and rinse water waste. Designed as a modular, fully automated platform, the Mecer System regenerates spent copper etchants—both alkaline and acidic—and simultaneously recycles rinse water, transforming a traditionally linear chemical process into a closed-loop system.
Driving Innovation: Depth Routing Processes—Achieving Unparalleled Precision in Complex PCBs
09/08/2025 | Kurt Palmer -- Column: Driving InnovationIn PCB manufacturing, the demand for increasingly complex and miniaturized designs continually pushes the boundaries of traditional fabrication methods, including depth routing. Success in these applications demands not only on robust machinery but also sophisticated control functions. PCB manufacturers rely on advanced machine features and process methodologies to meet their precise depth routing goals. Here, I’ll explore some crucial functions that empower manufacturers to master complex depth routing challenges.
Trouble in Your Tank: Minimizing Small-via Defects for High-reliability PCBs
08/27/2025 | Michael Carano -- Column: Trouble in Your TankTo quote the comedian Stephen Wright, “If at first you don’t succeed, then skydiving is not for you.” That can be the battle cry when you find that only small-diameter vias are exhibiting voids. Why are small holes more prone to voids than larger vias when processed through electroless copper? There are several reasons.
The Government Circuit: Navigating New Trade Headwinds and New Partnerships
08/25/2025 | Chris Mitchell -- Column: The Government CircuitAs global trade winds continue to howl, the electronics manufacturing industry finds itself at a critical juncture. After months of warnings, the U.S. Government has implemented a broad array of tariff increases, with fresh duties hitting copper-based products, semiconductors, and imports from many nations. On the positive side, tentative trade agreements with Europe, China, Japan, and other nations are providing at least some clarity and counterbalance.