Neutrons Help Demystify Multiferroic Materials
March 26, 2018 | ORNLEstimated reading time: 3 minutes

Materials used in electronic devices are typically chosen because they possess either special magnetic or special electrical properties. However, an international team of researchers using neutron scattering recently identified a rare material that has both.
In their paper published in Advanced Materials, the team, including researchers from the Department of Energy’s Oak Ridge National Laboratory, illustrates how this unique marriage is achieved in the multiferroic material BiMn3Cr4O12. Many materials are known for just one characteristic magnetic or electrical property, or for having the ability to change shape, but multiferroics contain some combination of these attributes.
Multiferroics are typically divided into two distinct categories: conventional (type-1) and unconventional (type-2). Conventional multiferroics are predominantly controlled by electricity and exhibit weak interactions with magnetism. Conversely, unconventional multiferroics are driven by magnetism and exhibit strong electrical interactions.
“We have found an interesting example of joint multiferroicity, meaning that both conventional and unconventional multiferroicity develop one after the other in the same material,” said ORNL researcher Huibo Cao.
One reason multiferroics are so desirable is that their dual characteristics can be controlled in combination with each other, providing, for example, electrically controlled magnetism or magnetically controlled electrical properties. Researchers say a better understanding of how these multifunctional materials behave could lead to significant advances in information storage and power performance in new devices.
For example, materials with the optimized combination of both multiferroic mechanisms could be used as efficient switches, magnetic field sensors, and memory devices.
“With this material, we see the potential to reach beyond the typical scope of multiferroic applications and make a significant impact on a variety of practical projects,” Cao said.
These insights could also serve as a foundation to help researchers develop similar materials containing this blend of properties.
“The existence of this rare material and the ability to find others like it provide a new range of exciting possibilities for future research and development,” said ORNL researcher Stuart Calder.
Neutrons are the most suitable probe to study the magnetism of these materials and provide a distinction between the different types of multiferroic behavior. Because neutrons have no charge, they can easily examine crystal structure behavior in complex sample environments such as pressure cells. At the same time, they have spin and the ability to behave like magnets, making them ideal for studying magnetism.
By exposing a sample to varying temperatures, magnetic/electric fields, and pressures, the researchers can observe how the atomic structure and magnetic properties respond to environmental factors and to each other, which could further guide the design of new materials.
The team performed neutron scattering measurements at ORNL’s High Flux Isotope Reactor, a DOE Office of Science User Facility. Using the Neutron Powder Diffractometer instrument, HFIR beamline HB-2A, they determined how the material’s magnetic structures correlate to its ferroelectric polarization, which is the slight separation between the centers of positive and negative charge in the atomic units making up the crystal structure.
“With neutrons, we can see how these magnetic structures are ordered to better understand the different types of multiferroics,” Calder said. “We are beginning to solve some of the mysteries that surround these materials.”
The research is supported by DOE’s Office of Science. HFIR is a DOE Office of Science User Facility. UT-Battelle manages ORNL for the DOE’s Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, click here.—by Elizabeth Rosenthal
Testimonial
"We’re proud to call I-Connect007 a trusted partner. Their innovative approach and industry insight made our podcast collaboration a success by connecting us with the right audience and delivering real results."
Julia McCaffrey - NCAB GroupSuggested Items
I-Connect007 Launches Advanced Electronics Packaging Digest
09/15/2025 | I-Connect007I-Connect007 is pleased to announce the launch of Advanced Electronics Packaging Digest (AEPD), a new monthly digital newsletter dedicated to one of the most critical and rapidly evolving areas of electronics manufacturing: advanced packaging at the interconnect level.
Panasonic Industry will Double the Production Capacity of MEGTRON Multi-layer Circuit Board Materials Over the Next Five Years
09/15/2025 | Panasonic Industry Co., Ltd.Panasonic Industry Co., Ltd., a Panasonic Group company, announced plans for a major expansion of its global production capacity for MEGTRON multi-layer circuit board materials today. The company plans to double its production over the next five years to meet growing demand in the AI server and ICT infrastructure markets.
Trouble in Your Tank: Implementing Direct Metallization in Advanced Substrate Packaging
09/15/2025 | Michael Carano -- Column: Trouble in Your TankDirect metallization systems based on conductive graphite are gaining popularity throughout the world. The environmental and productivity gains achievable with this process are outstanding. Direct metallization reduces the costs of compliance, waste treatment, and legal issues related to chemical exposure. A graphite-based direct plate system has been devised to address these needs.
Fresh PCB Concepts: Designing for Success at the Rigid-flex Transition Area
08/28/2025 | Team NCAB -- Column: Fresh PCB ConceptsRigid-flex PCBs come in all shapes and sizes. Manufacturers typically use fire-retardant, grade 4 (FR-4) materials in the rigid section and flexible polyimide materials in the flex region. Because of the small size, some rigid-flex PCBs, like those for hearing aid devices, are among the most challenging to manufacture. However, regardless of its size, we should not neglect the transition area between the rigid and flexible material.
Global Sourcing Spotlight: How to Evaluate Supplier Capabilities Worldwide
08/20/2025 | Bob Duke -- Column: Global Sourcing SpotlightIn global sourcing, the difference between a competitive edge and a catastrophic disruption often comes down to how well you vet your suppliers. Sourcing advanced PCBs, precision components, or materials for complex assemblies demands diligence, skepticism, and more than a little time on airplanes. Here’s how to do your due diligence when evaluating international suppliers and why cutting corners can cost you more than money.