Researchers Received DARPA Funding to Shrink Computing Memory
March 30, 2018 | University of VirginiaEstimated reading time: 2 minutes
In a case of “smaller is better,” a team of University of Virginia researchers has received a $3.4 million grant from Defense Advanced Research Projects Agency with the goal to shrink computing memory bits to a nanoscale.
Using tiny magnetic structures called ”skyrmions,” researchers hope to reduce the amount of energy needed to move memory bits and expand memory capabilities in the same amount of space.
The UVA team consists of lead principal investigator Avik Ghosh, a professor in the Department of Electrical and Computer Engineering and Department of Physics; Joseph Poon, William Barton Rogers Professor of Physics and chair of that department; Prasanna Balachandran, assistant professor in the Department of Materials Science and Engineering; and Mircea Stan, a professor in the Department of Electrical and Computer Engineering. Other co-principal investigators include Professor Geoffrey Beach at the Massachusetts Institute of Technology and Professor Andrew Kent in New York University. The program kicked off earlier this month.
With recent engineering developments, solid-state computing systems have the potential to overcome limits faced by present electronic memory, digital logic and sensors. The engineers seek to employ skyrmions, objects in a magnet where the magnetic direction reverses itself spatially from inside to out.
“Imagine a circular region, outside which a lot of tiny magnets are oriented upwards, but then as we go into the circle, they start to turn until they point downwards at the center,” Ghosh said. “That would be one kind of skyrmion.”
“Once created and set in motion, a skyrmion is highly stable and its shape cannot be easily deformed, traveling nearly unimpeded in the magnetic sea like a solitary wave in the ocean,” Poon said. “In the physics terminology, skyrmions are ‘topologically protected’ objects. These robust features of skyrmions can be exploited in the next generation of nanoelectronics.”
The team will target design principles to engineer skyrmions – created by an applied magnetic field or by injecting a current – that are ultrasmall and fast, traveling kilometers per second, as well as low-powered and stable at room temperature.
“Each skyrmion can be used to encode a memory bit – absence or presence of the skyrmion at a read-head can signify a binary one or zero,” Ghosh said. “What makes the skyrmions exciting is that they can, in principle, be much smaller than natural defects and notches in the magnets, and thus circumvent these defects and move at high speed. This allows us to envision efficient, fast, non-volatile memory at low power.”
Non-volatile memory is the kind that doesn’t evaporate when the machine is turned off.
“The skyrmion encodes information as ‘ones’s – down spins – in a sea of ‘zeros’ – up spins,” Ghosh said. “The research focuses on creating, driving and reading these skyrmions with little current, making them small enough to bypass obstacles and move fast by engineering the material properties.”
The practical application is fast, low-power, non-volatile memory.
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
ASM Technologies Limited signs MoU with the Guidance, Government of Tamilnadu to Expand Design-Led Manufacturing capabilities for ESDM
09/15/2025 | ASM TechnologiesASM Technologies Limited, a pioneer in Design- Led Manufacturing in the semiconductor and automotive industries, announced signing of Memorandum of Understanding (MoU) with the Guidance, Government of Tamilnadu whereby it will invest Rs. 250 crores in the state to expand its ESDM related Design-Led Manufacturing and precision engineering capacity. ASM Technologies will acquire 5 acres of land from the Government of Tamilnadu to set up a state-of-the-art design facility in Tamil Nadu's growing technology manufacturing ecosystem, providing a strong strategic advantage and long-term benefits for ASM.
Intel Announces Key Leadership Appointments to Accelerate Innovation and Strengthen Execution
09/09/2025 | Intel CorporationIntel Corporation today announced a series of senior leadership appointments that support the company’s strategy to strengthen its core product business, build a trusted foundry, and foster a culture of engineering across the business.
Cadence to Acquire Hexagon’s Design & Engineering Business
09/08/2025 | Cadence Design SystemsCadence announced it has entered into a definitive agreement to acquire the Design & Engineering (D&E) business of Hexagon AB, which includes its MSC Software business—a pioneer in engineering simulation and analysis solutions.
Marcy’s Musings: Continuing to Invent the Future With SEL
08/19/2025 | Marcy LaRont -- Column: Marcy's MusingsTwo years ago, PCB007 Magazine devoted an issue to Schweitzer Engineering Labs (SEL), a new captive greenfield PCB facility in Moscow, Idaho. We highlighted some of the most cutting-edge achievements in facility layout, design, and equipment in the PCB fabrication industry. SEL was a shining example of what was possible, providing insight and inspiration to PCB fabricators looking toward growth and expansion.
Advint and SanRex Expand High-Performance DC Rectifier Access for North American PCB Fabricators
08/12/2025 | Advint IncorporatedAdvint Incorporated has entered a strategic partnership with SanRex Corporation, enhancing access to industrial-grade DC rectifiers for the US printed circuit board industry. With a legacy of power innovation and performance across the globe, SanRex rectifiers are available through Advint’s proficient distribution network.