Bloodless Revolution in Diabetes Monitoring
April 10, 2018 | Bath UniversityEstimated reading time: 3 minutes

Scientists have created a non-invasive, adhesive patch, which promises the measurement of glucose levels through the skin without a finger-prick blood test, potentially removing the need for millions of diabetics to frequently carry out the painful and unpopular tests.
The patch does not pierce the skin, instead it draws glucose out from fluid between cells across hair follicles, which are individually accessed via an array of miniature sensors using a small electric current. The glucose collects in tiny reservoirs and is measured.
Readings can be taken every 10 to 15 minutes over several hours.
Crucially, because of the design of the array of sensors and reservoirs, the patch does not require calibration with a blood sample – meaning that finger prick blood tests are unnecessary.
Having established proof of the concept behind the device in a study published in Nature Nanotechnology, the research team from the University of Bath hopes that it can eventually become a low-cost, wearable sensor that sends regular, clinically relevant glucose measurements to the wearer’s phone or smartwatch wirelessly, alerting them when they may need to take action.
An important advantage of this device over others is that each miniature sensor of the array can operate on a small area over an individual hair follicle – this significantly reduces inter- and intra-skin variability in glucose extraction and increases the accuracy of the measurements taken such that calibration via a blood sample is not required.
The project is a multidisciplinary collaboration between scientists from the Departments of Physics, Pharmacy & Pharmacology, and Chemistry at the University of Bath.
Professor Richard Guy, from the Department of Pharmacy & Pharmacology, said: “A non-invasive - that is, needle-less - method to monitor blood sugar has proven a difficult goal to attain. The closest that has been achieved has required either at least a single-point calibration with a classic ‘finger-stick’, or the implantation of a pre-calibrated sensor via a single needle insertion. The monitor developed at Bath promises a truly calibration-free approach, an essential contribution in the fight to combat the ever-increasing global incidence of diabetes.”
Dr Adelina Ilie, from the Department of Physics, said: "The specific architecture of our array permits calibration-free operation, and it has the further benefit of allowing realisation with a variety of materials in combination. We utilised graphene as one of the components as it brings important advantages: specifically, it is strong, conductive, flexible, and potentially low-cost and environmentally friendly. In addition, our design can be implemented using high-throughput fabrication techniques like screen printing, which we hope will ultimately support a disposable, widely affordable device."
In this study the team tested the patch on both pig skin, where they showed it could accurately track glucose levels across the range seen in diabetic human patients, and on healthy human volunteers, where again the patch was able to track blood sugar variations throughout the day.
The next steps include further refinement of the design of the patch to optimise the number of sensors in the array, to demonstrate full functionality over a 24-hour wear period, and to undertake a number of key clinical trials.
Diabetes is a serious public health problem which is increasing. The World Health Organization predicts the world-wide incidence of diabetes to rise from 171M in 2000 to 366M in 2030. In the UK, just under six per cent of adults have diabetes and the NHS spends around 10% of its budget on diabetes monitoring and treatments. Up to 50% of adults with diabetes are undiagnosed.
An effective, non-invasive way of monitoring blood glucose could both help diabetics, as well as those at risk of developing diabetes, make the right choices to either manage the disease well or reduce their risk of developing the condition. The work was funded by the Engineering and Physical Sciences Research Council (EPSRC), the Medical Research Council (MRC), and the Sir Halley Stewart Trust.
Suggested Items
Cadence AI Autorouter May Transform the Landscape
06/19/2025 | Andy Shaughnessy, Design007 MagazinePatrick Davis, product management director with Cadence Design Systems, discusses advancements in autorouting technology, including AI. He emphasizes a holistic approach that enhances placement and power distribution before routing. He points out that younger engineers seem more likely to embrace autorouting, while the veteran designers are still wary of giving up too much control. Will AI help autorouters finally gain industry-wide acceptance?
Beyond Design: The Metamorphosis of the PCB Router
06/18/2025 | Barry Olney -- Column: Beyond DesignThe traditional PCB design process is often time-consuming and labor-intensive. Routing a complex PCB layout can consume up to 30% of a designer’s time, and addressing this issue is not straightforward. We have all encountered this scenario: You spend hours setting the constraints and finally hit the Go button, only to be surprised by the lack of visual appeal and the obvious flaws in the result.
Robust AI Demand Drives 6% QoQ Growth in Revenue for Top 10 Global IC Design Companies in 1Q25
06/15/2025 | TrendForceTrendForce’s latest investigations reveal that 1Q25 revenue for the global IC design industry reached US$77.4 billion, marking a 6% QoQ increase and setting a new record high. This growth was fueled by early stocking ahead of new U.S. tariffs on electronics and the ongoing construction of AI data centers around the world, which sustained strong chip demand despite the traditional off-season.
Cadence Advances Design and Engineering for Europe’s Manufacturers on NVIDIA Industrial AI Cloud
06/13/2025 | Cadence Design Systems, Inc.At NVIDIA GTC Paris, Cadence announced it is providing optimized solutions for the world’s first industrial AI cloud in collaboration with NVIDIA.
Zuken Autorouters Embrace Collaborative AI
06/12/2025 | Andy Shaughnessy, Design007 MagazineMaybe you’ve never liked autorouters; if so, you’re not alone. As Andy Buja, Zuken’s technical account manager for PCB Solutions, admits, autorouters are not perfect. But today’s autorouters allow designers a greater level of control than ever before, especially routers that incorporate collaborative AI.