From Insulator to Conductor in a Flash
April 16, 2018 | Forschungsverbund Berlin e. V.Estimated reading time: 3 minutes

Over the past decades, computers have become faster and faster and hard disks and storage chips have reached enormous capacities. But this trend cannot continue forever: we are already running up against physical limits that will prevent silicon-based computer technology from attaining any impressive speed gains from this point on. Researchers are particularly optimistic that the next era of technological advancements will start with the development of novel information-processing materials and technologies that combine electrical circuits with optical ones. Using short laser pulses, a research team led by Misha Ivanov of the Max Born Institute in Berlin together with scientists from the Russian Quantum Center in Moscow have now shed light on the extremely rapid processes taking place within these novel materials. Their results have appeared in the prestigious journal “Nature Photonics”.
Of particular interest for modern material research in solid state physics are “strongly correlated systems”, so called for the strong interactions between the electrons in these materials. Magnets are a good example of this: the electrons in magnets align themselves in a preferred direction of spin inside the material, and it is this that produces the magnetic field. But there are other, entirely different structural orders that deserve attention. In so-called Mott insulators for example, a class of materials now being intensively researched, the electrons ought to flow freely and the materials should therefore be able to conduct electricity as well as metals. But the mutual interaction between electrons in these strongly correlated materials impedes their flow and so the materials behave as insulators instead.
By disrupting this order with a strong laser pulse, the physical properties can be made to change dramatically. This can be likened to a phase transition from solid to liquid: as ice melts, for example, rigid ice crystals transform into free-flowing water molecules. Very similarly, the electrons in a strongly correlated material become free to flow when an external laser pulse forces a phase transition in their structural order. Such phase transitions should allow us to develop entirely new switching elements for next-generation electronics that are faster and potentially more energy efficient than present-day transistors. In theory, computers could be made around a thousand times faster by “turbo-charging” their electrical components with light pulses.
The problem with studying these phase transitions is that they are extremely fast and it is therefore very difficult to “catch them in the act”. So far, scientists have had to content themselves with characterising the state of a material before and after a phase transition of this kind. Researchers Rui E. F. Silva, Olga Smirnova, and Misha Ivanov of the Berlin Max Born Institute, however, have now devised a method that will, in the truest sense, shed light on the process. Their theory involves firing extremely short, tailored laser pulses at a material – pulses that can only recently be produced in the appropriate quality given the latest developments in lasers. One then observes the material’s reaction to these pulses to see how the electrons in the material are excited into motion and, like a bell, emit resonant vibrations at specific frequencies, as harmonics of the incident light.
“By analysing this high harmonic spectrum, we can observe the change in the structural order in these strongly correlated materials ‘live’ for the first time,” says first author of the paper Rui Silva of the Max Born Institute. Laser sources capable of targetedly triggering these transitions have only been available since very recently. The laser pulses namely have to be amply strong and extremely short – on the order of femtoseconds in duration (millionths of a billionth of a second).
In some cases, it takes only a single oscillation of light to disrupt the electronic order of a material and turn an insulator into a metal-like conductor. The scientists at the Berlin Max Born Institute are among the world’s leading experts in the field of ultrashort laser pulses.
“If we want to use light to control the properties of electrons in a material, then we need to know exactly how the electrons will react to light pulses,” Ivanov explains. With the latest-generation laser sources, which allow full control over the electromagnetic field even down to a single oscillation, the newly published method will allow deep insights into the materials of the future.
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
I-Connect007 Launches Advanced Electronics Packaging Digest
09/15/2025 | I-Connect007I-Connect007 is pleased to announce the launch of Advanced Electronics Packaging Digest (AEPD), a new monthly digital newsletter dedicated to one of the most critical and rapidly evolving areas of electronics manufacturing: advanced packaging at the interconnect level.
Panasonic Industry will Double the Production Capacity of MEGTRON Multi-layer Circuit Board Materials Over the Next Five Years
09/15/2025 | Panasonic Industry Co., Ltd.Panasonic Industry Co., Ltd., a Panasonic Group company, announced plans for a major expansion of its global production capacity for MEGTRON multi-layer circuit board materials today. The company plans to double its production over the next five years to meet growing demand in the AI server and ICT infrastructure markets.
Trouble in Your Tank: Implementing Direct Metallization in Advanced Substrate Packaging
09/15/2025 | Michael Carano -- Column: Trouble in Your TankDirect metallization systems based on conductive graphite are gaining popularity throughout the world. The environmental and productivity gains achievable with this process are outstanding. Direct metallization reduces the costs of compliance, waste treatment, and legal issues related to chemical exposure. A graphite-based direct plate system has been devised to address these needs.
Fresh PCB Concepts: Designing for Success at the Rigid-flex Transition Area
08/28/2025 | Team NCAB -- Column: Fresh PCB ConceptsRigid-flex PCBs come in all shapes and sizes. Manufacturers typically use fire-retardant, grade 4 (FR-4) materials in the rigid section and flexible polyimide materials in the flex region. Because of the small size, some rigid-flex PCBs, like those for hearing aid devices, are among the most challenging to manufacture. However, regardless of its size, we should not neglect the transition area between the rigid and flexible material.
Global Sourcing Spotlight: How to Evaluate Supplier Capabilities Worldwide
08/20/2025 | Bob Duke -- Column: Global Sourcing SpotlightIn global sourcing, the difference between a competitive edge and a catastrophic disruption often comes down to how well you vet your suppliers. Sourcing advanced PCBs, precision components, or materials for complex assemblies demands diligence, skepticism, and more than a little time on airplanes. Here’s how to do your due diligence when evaluating international suppliers and why cutting corners can cost you more than money.