Scientists Measure Charging Levels of Single Molecules on Insulators
April 17, 2018 | University of LiverpoolEstimated reading time: 1 minute

Scientists from the University of Liverpool are part of an international research team that, for the first time, has measured charging levels of single molecules on insulators.
In a paper published in the journal, Nature Nanotechnology, a team of scientists from the University, IBM and University of Regensburg used a brand new approach to charging a molecule on an insulator.
They first grew multi layers of NaCl, also known as sodium chloride or salt, to act as an insulating material, on top of a metal substrate.
Such a system allows for adsorbed molecules to have their charge states stabilised and decoupled from the metal surface.
The team then developed and investigated a new approach that allowed measuring charge reorganisation energies of individual molecules on top of the insulator.
They used noncontact atomic force microscopy (AFM) to probe single electron transfer between the AFM tip and well-defined charge states of a single napthalocyanine molecule in both directions to test the method.
This enabled them to measure energy levels of different charge states of a single, adsorbed molecule on top of an ultra thin insulator with single electron sensitivity.
Liverpool Chemist, Professor Mats Persson, who was responsible for the theory, said: “The ability to measure the charge reorganisation energy of a single, adsorbed molecule by this new technique is a most impressive achievement since it is a key quantity in charge transport, which takes place in many important processes in biology, nanotechnology, photocatalysis and electronics.”
IBM physicist, Leo Gross, lead author of the paper, added: “With our AFM method, we measured the energy levels in both charge state change directions on a thin film substrate. But it’s incredibly demanding work that deals with very weak signals, meaning many careful measurements are needed to perform proper statistical analysis.
“Using this new methodology, we use the tip of the microscope and force exerted on the tip to count single electrons. We adjust the tip height and voltage and then count how long it takes for the one electron to go (or from) the tip and from this you can obtain the energy levels.”
The finding represents a big step forward for single molecule electronics and its application spans from characterisations of defects in chips, to photovoltaics and organic semiconductors.
Here’s Dr Leo Gross from IBM Research explaining the science.
Suggested Items
UHDI Fundamentals: UHDI Drives Unique IoT Innovation—Smart Homes
06/03/2025 | Anaya Vardya, American Standard CircuitsThe combination of UHDI's high-bandwidth capabilities and IoT's real-time data processing can lead to more efficient, immersive, and smarter IoT systems. This convergence of two revolutionary technologies is enabling quantum advancements in some very “unconventional” applications.
Ather Energy, Infineon Technologies Partner to Accelerate India’s Electric Two-wheeler Revolution
05/30/2025 | InfineonAther Energy, a leading electric two-wheeler manufacturer in India and Infineon Technologies Asia Pacific Pte Ltd, a global leader in semiconductor solutions, signed a Memorandum of Understanding (MoU) in Seoul, South Korea, to jointly drive innovation in the electric vehicle (EV) industry in India.
Huawei Single SitePower Solution Creates Four Synergies to Accelerate Site Intelligence
05/27/2025 | PRNewswireDuring the 9th Global ICT Energy Efficiency Summit in Dubai, Huawei showcased its next-generation digital and intelligent site power facility solution Single SitePower, which is set to drive the intelligent transformation of ICT energy infrastructure.
Hitachi Energy, Statnett to Deliver Norway’s First Eco-Efficient Transmission Grid Connection Solution
05/26/2025 | Hitachi EnergyHitachi Energy announces the signing of contracts with Statnett, the Norwegian power system operator, to deliver eco-efficient grid connection solutions in the greater Oslo area.
Dymax to Showcase Light-Cure Solutions at The European Battery Show 2025
05/23/2025 | Dymax CorporationDymax, a global manufacturer of rapid light-curing materials and equipment, will exhibit at The European Battery Show 2025 in Stand 4-C60