Scientists Measure Charging Levels of Single Molecules on Insulators
April 17, 2018 | University of LiverpoolEstimated reading time: 1 minute

Scientists from the University of Liverpool are part of an international research team that, for the first time, has measured charging levels of single molecules on insulators.
In a paper published in the journal, Nature Nanotechnology, a team of scientists from the University, IBM and University of Regensburg used a brand new approach to charging a molecule on an insulator.
They first grew multi layers of NaCl, also known as sodium chloride or salt, to act as an insulating material, on top of a metal substrate.
Such a system allows for adsorbed molecules to have their charge states stabilised and decoupled from the metal surface.
The team then developed and investigated a new approach that allowed measuring charge reorganisation energies of individual molecules on top of the insulator.
They used noncontact atomic force microscopy (AFM) to probe single electron transfer between the AFM tip and well-defined charge states of a single napthalocyanine molecule in both directions to test the method.
This enabled them to measure energy levels of different charge states of a single, adsorbed molecule on top of an ultra thin insulator with single electron sensitivity.
Liverpool Chemist, Professor Mats Persson, who was responsible for the theory, said: “The ability to measure the charge reorganisation energy of a single, adsorbed molecule by this new technique is a most impressive achievement since it is a key quantity in charge transport, which takes place in many important processes in biology, nanotechnology, photocatalysis and electronics.”
IBM physicist, Leo Gross, lead author of the paper, added: “With our AFM method, we measured the energy levels in both charge state change directions on a thin film substrate. But it’s incredibly demanding work that deals with very weak signals, meaning many careful measurements are needed to perform proper statistical analysis.
“Using this new methodology, we use the tip of the microscope and force exerted on the tip to count single electrons. We adjust the tip height and voltage and then count how long it takes for the one electron to go (or from) the tip and from this you can obtain the energy levels.”
The finding represents a big step forward for single molecule electronics and its application spans from characterisations of defects in chips, to photovoltaics and organic semiconductors.
Here’s Dr Leo Gross from IBM Research explaining the science.
Suggested Items
Forge Nano Secures $40M to Scale U.S. Battery Manufacturing and Commercial Semiconductor Equipment Businesses
05/02/2025 | Forge NanoForge Nano, Inc., a technology company pioneering domestic battery and semiconductor innovations, announced the successful close of $40 million in new funding.
Hikrobot Integrates Wiferion Technology Into AMRs
04/30/2025 | HikrobotIn the automotive industry, every second counts. AMRs have to work without interruption - charging breaks mean less productivity. Hikrobot, one of the world's leading providers of mobile robotics, therefore relies on Wiferion's wireless charging technology, which has already established itself as the standard in the industry.
Hikrobot Integrates Wiferion Technology into AMRs
04/29/2025 | WiferionIn the automotive industry, every second counts. AMRs have to work without interruption - charging breaks mean less productivity. Hikrobot, one of the world's leading providers of mobile robotics, therefore relies on Wiferion's wireless charging technology, which has already established itself as the standard in the industry.
CCL Design, Ynvisible Announce Strategic Partnership to Deliver Scalable Printed Display Solutions
04/28/2025 | CCL DesignCCL Design will integrate Ynvisible's proprietary display technology into its global manufacturing infrastructure and technology portfolio.
Candor Elevates PCB Fabrication Services with Continued Facility Upgrades
04/28/2025 | Candor CircuitsOntario-based circuit board manufacturer, Candor Circuit Boards has recently completed a series of facility upgrades to improve their PCB offerings. These investments will allow Candor to provide higher volumes of complicated boards more efficiently with better yield. The new technology has allowed the company to take on exciting high technology projects and collaborations in industries such as Military and Aerospace, Medical, Energy and more.