Neutrons Provide Insights Into Increased Performance for Hybrid Perovskite Solar Cells
April 25, 2018 | ORNLEstimated reading time: 3 minutes

Neutron scattering has revealed, in real time, the fundamental mechanisms behind the conversion of sunlight into energy in hybrid perovskite materials. A better understanding of this behavior will enable manufacturers to design solar cells with increased efficiency.
Image caption: Neutron interactions revealed the orthorhombic structure of the hybrid perovskite stabilized by the strong hydrogen bonds between the nitrogen substituent of the methylammonium cations and the bromides on the corner-linked PbBr6 octahedra. Image credit: ORNL/Jill Hemman
The multi-institutional team of researchers from the Department of Energy’s Oak Ridge National Laboratory, Hunan University and the University of Nebraska–Lincoln used photoluminescence measurements, along with neutron and x-ray scattering, to study the relationship between the material’s microscopic structure and its optoelectronic properties. By examining the material under varying degrees of temperature, the researchers were able to track atomic structural changes and establish how hydrogen bonding plays a key role in the material’s performance. Their results are published in the journal Advanced Materials.
Hybrid perovskites hold promise to be more efficient in converting light into energy than traditional solar cell materials. They are also easier to manufacture as they can be spin cast from solution and do not require high-vacuum chambers for synthesis.
Unlike their singular silicon or germanium counterparts, hybrid perovskites are made of both organic and inorganic molecules. The structure is built from inorganic lead and bromine molecules arranged in octahedral units that form cages around the organic methylammonium cations (positively charged ions) consisting of carbon, nitrogen and hydrogen.
“The advantage of having both organic and inorganic molecules in a well-defined crystal structure means we can tailor the material by tuning either one group or the other to optimize the properties,” said Kai Xiao, a researcher at ORNL’s Center for Nanophase Materials Sciences. “But even though researchers have been studying these materials for severa+-- years, we still don’t fully understand on a fundamental level how the organic components are affecting the properties.”
Finding the right combination and molecular orientation of the organic/inorganic components is the key to unlocking more functionality, but understanding those interactions requires the right tools.
“Neutrons are very good at this because they’re sensitive to lighter elements like hydrogen,” said ORNL instrument scientist Xiaoping Wang. “Because we’re able to track each neutron, we get information about things like where the atoms are, what their temperature is, and how they’re behaving.”
Using the TOPAZ instrument at ORNL’s Spallation Neutron Source, the team was able to observe the hydrogen bonding interactions at the atomic scale.
The experiment revealed the material undergoes significant structural changes between approximately 150 and 130 Kelvin (roughly -190 and -225 degrees Fahrenheit). Cooling the material slowed the movement of the organic component into an ordered state, in which precise in situ measurements were made in real time to observe exactly how the organic molecules were binding to the lead-bromine component through hydrogen bonds.
“We saw the ordering is directly related to the hydrogen bonding in the structure, and how any changes can affect the energy gap of the material,” said Wang. “That lets us know how well sunlight is being absorbed and what that could mean in terms of applications for photovoltaic materials.”
Complementary photoluminescence and x-ray scattering measurements, along with crystal synthesis, were conducted at CNMS. Theoretical calculations were performed by scientists in ORNL’s Materials Science and Technology Division.
“Hybrid perovskites are already a good material,” said Xiao. “Now that we know how the orientation of the organic molecules impacts the crystal structure, and how we can tune them further to change the desired properties, this new fundamental understanding will enable us to design new materials with even greater potential.”
Xiao and Wang’s coauthors include lead author Bin Yang, Wenmei Ming, Mao-Hua Du, Jong K. Keum, Alexander A. Puretzky, Christopher M. Rouleau, Jonsong Huang and David B. Geohegan.
The research was supported by DOE’s Office of Science. The Spallation Neutron Source and the Center for Nanophase Materials Sciences are DOE Office of Science User Facilities. ORNL is managed by UT-Battelle for the Department of Energy’s Office of Science, the single largest supporter of basic research in the physical sciences in the United States. DOE’s Office of Science is working to address some of the most pressing challenges of our time. For more information, please click here.
Suggested Items
Symposium Review: Qnity, DuPont, and Insulectro Forge Ahead with Advanced Materials
07/02/2025 | Barb Hockaday, I-Connect007In a dynamic and informative Innovation Symposium hosted live and on Zoom on June 25, 2025, representatives from Qnity (formerly DuPont Electronics), DuPont, and Insulectro discussed the evolving landscape of flexible circuit materials. From strategic corporate changes to cutting-edge polymer films, the session offered deep insight into design challenges, reliability, and next-gen solutions shaping the electronics industry.
Indium Corporation Expert to Present on Automotive and Industrial Solder Bonding Solutions at Global Electronics Association Workshop
06/26/2025 | IndiumIndium Corporation Principal Engineer, Advanced Materials, Andy Mackie, Ph.D., MSc, will deliver a technical presentation on innovative solder bonding solutions for automotive and industrial applications at the Global Electronics A
Gorilla Circuits Elevates PCB Precision with Schmoll’s Optiflex II Alignment System
06/23/2025 | Schmoll MaschinenGorilla Circuits, a leading PCB manufacturer based in Silicon Valley, has enhanced its production capabilities with the addition of Schmoll Maschinen’s Optiflex II Post-Etch Punch system—bringing a new level of precision to multilayer board fabrication.
Day 1: Cutting Edge Insights at the EIPC Summer Conference
06/17/2025 | Pete Starkey, I-Connect007The European Institute for the PCB Community (EIPC) Summer Conference took place this year in Edinburgh, Scotland, June 3-4. This is the second of three articles on the conference. The other two cover the keynote speeches and Day 2 of the technical conference. Below is a recap of the first day’s sessions.
American Made Advocacy: Supporting the Entire PCB Ecosystem—Materials to OEMs
06/17/2025 | Shane Whiteside -- Column: American Made AdvocacyWith the addition of RTX to PCBAA’s membership roster, we now represent the interests of companies in the entire PCB ecosystem. From material providers to OEMs, the insights of our collective members help us educate, advocate, and support legislation and policy favorable to America’s microelectronics manufacturers. The industry veterans who lead these companies provide valuable perspective, and their accumulated wisdom makes us an even stronger association.