Optimal Propulsion: Helping Nanoscale Robots Swim Better
May 2, 2018 | TechnionEstimated reading time: 2 minutes
Researchers from three departments at the Technion have completed an interdisciplinary study revealing the optimal configuration for nanoscale robots that can travel within the human body to perform a variety of tasks. The model improves previous nature-inspired models.
Led by Professor Alex Leshansky of the Technion’s Wolfson Department of Chemical Engineering, the research team comprised of members of three different Technion faculties (the others were the Department of Mathematics and the Department of Physics) analyzed the optimal configuration for nanoscale robots that are designed to “swim” through the human body. Their findings were recently published in Science Robotics.
For the last decade, research groups around the world have been working to develop nanometer- or micrometer-scale robots that can move in a liquid environment. These robots provide diverse opportunities in important biomedical applications, including drug delivery.
The original inspiration for the design of these miniature robots comes from bacteria, which move using slender helical tails called flagella. As the flagellum rotates in the liquid, it creates friction that propels the bacterium. Inspired by this natural mechanism, research groups have developed tiny spirals that are driven by a rotating magnetic field.
Although this method offers a number of advantages (including low power requirements of magnetic field), creating these spirals is complicated. As a result, researchers have suggested using random clusters of magnetic nanoparticles as tiny “swimmers.” Such clusters can be easily fabricated using a simple aggregation process. But in the article published in Science Robotics, the Technion researchers demonstrate that this approach does not yield optimal results.
As part of their study, the Technion researchers developed a theory for calculating the optimal speed of these magnetic swimmers based on their shape and magnetization. As a result, they can now calculate the maximum possible speed of random clusters, and the optimal shape for these tiny swimmers. Contrary to expectations, they found that the thin spiral inspired by nature is not the optimal shape, but rather a thick arc with twisted ends. This optimal propeller was shown to move much faster than the previously developed random clusters.
According to Professor Leshansky, the study’s findings will lead to the development of more efficient microrobots: “Most researchers in the field assume that the biomimetic helical shape for tiny swimming devices is the optimal one. To our surprise, we discovered that the optimal shape is rather different than helix and were able to demonstrate more efficient structure.”
The research was sponsored by the German-Israeli Foundation for Scientific Research and Development (GIF), the Israel Science Foundation (ISF), and an Integration of Immigrant Scientists grant from the Ministry of Aliyah and Integration and the Council for Higher Education’s Budget and Planning Committee.
Suggested Items
Hon Hai Research Institute Achieves Breakthrough in Quantum Cryptography Recognized by Leading Global Conference
06/17/2025 | FoxconnHon Hai Research Institute (HHRI), the research arm of Hon Hai Technology Group (Foxconn), the world’s largest electronics manufacturer and technology service provider, has achieved a significant breakthrough in quantum computing.
VIAVI, Hanyang University Sign Memorandum of Understanding to Advance 6G Research
06/10/2025 | PRNewswireVIAVI Solutions Inc. and Hanyang University, one of South Korea's leading academic institutions, today announced a Memorandum of Understanding to collaborate on AI-RAN, 5G and 6G research at the university's Beyond-G Global Innovation Center.
IDC Increases its PC and Tablet Forecasts Despite Tariff Uncertainty
06/02/2025 | IDCAfter recording strong results in the first quarter of 2025, IDC is increasing its traditional PC forecast for 2025 — this comes despite the significant impact that US tariffs have had on its trading partners’ market sentiment.
IonQ Signs MoU with KISTI to Accelerate South Korea’s Role in the Global Quantum Race
06/02/2025 | IonQIonQ, a leading commercial quantum computing and networking company, today announced the signing of a memorandum of understanding (MoU) with the Korea Institute of Science and Technology Information (KISTI), a leading national science and technology research institute and supercomputing center.
Stephen Winchell Appointed DARPA Director
06/02/2025 | DARPAStephen Winchell was sworn in today as the 24th director of the Defense Advanced Research Projects Agency.