Battery-free ‘Smart’ Toys Move Closer to Commercial Reality
May 10, 2018 | ACSEstimated reading time: 1 minute
Rubber duckies could soon be at the forefront of an electronic revolution. In ACS Sustainable Chemistry & Engineering, scientists report they have used specialized nanogenerators that gather energy from mechanical vibrations to transform squeaky bathtub companions and other conventional children’s toys into ‘smart’ electronics. They say the finding could have broad commercial applications, leading to the development of battery-free, self-powered toys, medical sensors and other devices.
By age 4, virtually every child has had contact with an electronic toy or mobile device, according to the American Academy of Pediatrics. Keeping these devices blinking and beeping is tedious, often requiring frequent charging or battery changes. Researchers have explored alternative ways to produce and store energy for these devices without using batteries. One promising approach involves the use of triboelectric nanogenerators, or TENGs. TENGs gather electrical charges from friction, similar to the static that builds up on a balloon when it is rubbed against someone’s head. TENGs amplify and convert this biomechanical energy into a usable form. However, ramping up these devices for commercial applications has been challenging, possibly because of low energy storage and conversion efficiencies. To address some of these issues, Sang-Jae Kim and colleagues at Jeju National University in South Korea sought to more effectively harness the energy from TENGs and use it to transform traditional toys into commercially viable, self-powered ‘smart’ toys.
The researchers designed and incorporated TENGs — made with aluminum electrodes and an eco-friendly silicone-like film between them — into rubber ducks and clapping toys. Squeezing or shaking the toys alternatively separated and brought the electrodes into contact with film, creating an electrical charge. Once activated, the TENGs harvested enough biomechanical energy to illuminate several LED lights attached to each toy. The TENGs were durable, suggesting they could operate for substantial periods. The researchers conclude their unique approach can transform traditional toys into battery-free interactive ones, and raises the prospect of successfully using TENGs commercially in other “smart” gadgets including medical devices and wearable electronics.
Suggested Items
Meet Thiago Guimaraes, IPC's New Director of Industry Intelligence
05/05/2025 | Chris Mitchell, IPC VP, Global Government RelationsThe fast pace of innovation in the electronics manufacturing industry means business owners must continuously adapt their processes and capabilities to meet changing customer demands and market trends. To that end, IPC has hired Thiago Guimaraes as the new director of Industry Intelligence. In this interview, Thiago shares key goals and objectives that could revolutionize the industry as he helps stakeholders navigate industry trends and challenges.
Stocks Tumble as Nvidia Warns of Major Hit From U.S.-China Export Curbs
04/17/2025 | I-Connect007 Editorial TeamU.S. stocks slid sharply Wednesday after Nvidia warned that new U.S. export restrictions on chips to China could slash billions from its revenue, deepening investor anxiety over the broader economic fallout of President Donald Trump’s ongoing trade war.
Samsung and Google Cloud Expand Partnership
04/09/2025 | PRNewswireSamsung Electronics Co., Ltd and Google Cloud today announced an expanded partnership to bring Google Cloud's generative AI technology to Ballie, a new home AI companion robot from Samsung.
Insulectro Technology Village to Feature 35 Powerchats at IPC APEX EXPO 2025
03/11/2025 | InsulectroInsulectro, the largest distributor of materials for use in the manufacture of PCBs and printed electronics, will present its popular and successful 13.5-minute PowerChats™ during this year’s IPC APEX EXPO at the Anaheim Convention Center, March 18-20, 2025.
Drip by Drip: Semiconductor Water Management Innovations
03/05/2025 | IDTechExNot only does semiconductor manufacturing require large volumes of energy, chemicals, and silicon wafers, it also requires vast volumes of water. IDTechEx’s latest report, “Sustainable Electronics and Semiconductor Manufacturing 2025-2035: Players, Markets, Forecasts”, forecasts water usage across semiconductor manufacturing to double by 2035, as demand for integrated circuits continues to rise.