A Surprising New Superconductor
May 11, 2018 | CIRESEstimated reading time: 3 minutes
Last September, CIRES chemist and instrument designer Don David and colleagues Dave Pappas and Xian Wu at the National Institute of Standards and Technology discovered a powerful new plated metal combination that superconducts at easily attained temperatures—paving the road for the next critical steps in the development of cutting-edge supercomputers. David and his colleagues just published the new recipe: an ultrathin layer of rhenium sandwiched between layers of gold, each measuring 1/1000th the diameter of a human hair that can superconduct at critical temperature over 6 Kelvin.
“The sheer magnitude of the critical temperature was unexpected,” said Don David, director of the CIRES Integrated Instrument Development Facility and coauthor on a paper published this week in Applied Physics Letters. “We had been thinking for a while about ways to impart superconducting properties to gold and copper films, and we were surprised at how robust and effective the thin layer of electroplated Re was.”
A superconductor is a material with zero electrical resistance when cooled to a critical temperature. This temperature is usually strikingly low and expensive to obtain. The team’s electroplated rhenium meets ideal characteristics desired for use in circuit boards for ultrafast, next-generation computing applications: superconducting at higher, easier-to-achieve critical temperatures, easy to work with mechanically, non-toxic, and melts at high temperatures. The new finding is already drawing attention from international computing giants.
Electroplating, the process passing an electrical current through an aqueous solution of a dissolved metal to create a metal coating on a submerged object, is something David does almost daily. David’s work is in high demand in the research community: He and his team support science by plating instruments like charged-particle optics and components for cryogenics applications, and in this case, circuit boards for a team at NIST. They were looking for a metal plating that might be superconducting for the Pappas’s Quantum Processing Group at NIST. The team had unsuccessfully tried a number combinations, then one day David’s NIST colleague Xian Wu suggested they try rhenium: a hard, trace metal, with a high melting point, often used in the construction of jet engine turbines.
The team tested for electrical resistance, and were happy to see it superconduct up to 6K, well above the boiling temperature of liquid helium (4.2 K). The team is now investigating the role of hydrogen incorporation, interfaces, and strain on the enhanced superconducting temperature. But whatever the reason for the enhancement, being able to electroplate a superconductor is a giant step forward in the creation of tomorrow’s high-performance, superconducting computers.
Inside every computer there is a circuit board: a layered, electronic plank etched with thousands of conductive pathways. Pulses of electrical information called “bits” speed across the board, carrying out the computer’s functions. In regular computers, these electrical pulses are hindered by the material that comprises the board—electrical resistance slows down the electrons scurrying about the circuitry, and the wasted energy becomes heat. But with a superconductor, there is literally zero electrical resistance, so there is no heating. This efficiency will result in exceedingly fast and powerful computer systems.
Superconductors aren’t new, but the new paper presents evidence that electroplated rhenium may be the best material found to date for superconductive computer circuit board construction. Many other superconductive materials, like mercury or lead, are difficult to work with mechanically, have poor soldering properties, or melt at too-low temperatures. Even more impressively, the electroplating process would be easily scaled-up to mass-production, David said.
The team has applied for a provisional patent, and their work has already sparked interest from several technology giants and government sponsors.
Suggested Items
The Evolution of Picosecond Laser Drilling
06/19/2025 | Marcy LaRont, PCB007 MagazineIs it hard to imagine a single laser pulse reduced not only from nanoseconds to picoseconds in its pulse duration, but even to femtoseconds? Well, buckle up because it seems we are there. In this interview, Dr. Stefan Rung, technical director of laser machines at Schmoll Maschinen GmbH, traces the technology trajectory of the laser drill from the CO2 laser to cutting-edge picosecond and hybrid laser drilling systems, highlighting the benefits and limitations of each method, and demonstrating how laser innovations are shaping the future of PCB fabrication.
Day 2: More Cutting-edge Insights at the EIPC Summer Conference
06/18/2025 | Pete Starkey, I-Connect007The European Institute for the PCB Community (EIPC) summer conference took place this year in Edinburgh, Scotland, June 3-4. This is the third of three articles on the conference. The other two cover Day 1’s sessions and the opening keynote speech. Below is a recap of the second day’s sessions.
Day 1: Cutting Edge Insights at the EIPC Summer Conference
06/17/2025 | Pete Starkey, I-Connect007The European Institute for the PCB Community (EIPC) Summer Conference took place this year in Edinburgh, Scotland, June 3-4. This is the second of three articles on the conference. The other two cover the keynote speeches and Day 2 of the technical conference. Below is a recap of the first day’s sessions.
Preventing Surface Prep Defects and Ensuring Reliability
06/10/2025 | Marcy LaRont, PCB007 MagazineIn printed circuit board (PCB) fabrication, surface preparation is a critical process that ensures strong adhesion, reliable plating, and long-term product performance. Without proper surface treatment, manufacturers may encounter defects such as delamination, poor solder mask adhesion, and plating failures. This article examines key surface preparation techniques, common defects resulting from improper processes, and real-world case studies that illustrate best practices.
RF PCB Design Tips and Tricks
05/08/2025 | Cherie Litson, EPTAC MIT CID/CID+There are many great books, videos, and information online about designing PCBs for RF circuits. A few of my favorite RF sources are Hans Rosenberg, Stephen Chavez, and Rick Hartley, but there are many more. These PCB design engineers have a very good perspective on what it takes to take an RF design from schematic concept to PCB layout.