Self-Assembling 3D Battery Would Charge in Seconds
May 18, 2018 | Cornell UniversityEstimated reading time: 2 minutes

The world is a big place, but it's gotten smaller with the advent of technologies that put people from across the globe in the palm of one's hand. And as the world has shrunk, it has also demanded that things happen ever faster - including the time it takes to charge an electronic device.
Image caption: A rendering of the 3D battery architecture (top; not to scale) with interpenetrating anode (grey, with minus sign), separator (green), and cathode (blue, plus sign), each about 20 nanometers in size. Below are their respective molecular structures.
A cross-campus collaboration led by Ulrich Wiesner, professor of engineering in the at Cornell University, addresses this demand with a novel energy storage device architecture that has the potential for lightning-quick charges.
The group's idea: Instead of having the batteries' anode and cathode on either side of a nonconducting separator, intertwine the components in a self-assembling, 3D gyroidal structure, with thousands of nanoscale pores filled with the elements necessary for energy storage and delivery.
"This three-dimensional architecture basically eliminates all losses from dead volume in your device," Wiesner said. "More importantly, shrinking the dimensions of these interpenetrated domains down to the nanoscale, as we did, gives you orders of magnitude higher power density. In other words, you can access the energy in much shorter times than what's usually done with conventional battery architectures." How fast is that? Wiesner said that, due to the dimensions of the battery's elements being shrunk down to the nanoscale, "by the time you put your cable into the socket, in seconds, perhaps even faster, the battery would be charged."
The architecture for this concept is based on block copolymer self-assembly, which the Wiesner group has employed for years in other devices, including a gyroidal solar cell and a gyroidal superconductor. Joerg Werner, Ph.D. '15, lead author on this work, had experimented with self-assembling photonic devices, and wondered if the same principles could be applied to carbon materials for energy storage.
The gyroidal thin films of carbon - the battery's anode, generated by block copolymer self-assembly - featured thousands of periodic pores on the order of 40 nanometers wide. These pores were then coated with a 10 nm-thick, electronically insulating but ion-conducting separator through electropolymerization, which by the very nature of the process produced a pinhole-free separation layer.
That's vital, since defects like holes in the separator are what can lead to catastrophic failure giving rise to fires in mobile devices such as cellphones and laptops.
The next step is the addition of the cathode material - in this case, sulfur - in an amount that doesn't quite fill the remainder of the pores. Since sulfur can accept electrons but doesn't conduct electricity, the final step is backfilling with an electronically conducting polymer - known as PEDOT (poly[3,4-ethylenedioxythiophene]).
While this architecture offers proof of concept, Wiesner said, it's not without challenges. Volume changes during discharging and charging the battery gradually degrade the PEDOT charge collector, which doesn't experience the volume expansion that sulfur does.
"When the sulfur expands," Wiesner said, "you have these little bits of polymer that get ripped apart, and then it doesn't reconnect when it shrinks again. This means there are pieces of the 3D battery that you then cannot access."
The group is still perfecting the technique, but applied for patent protection on the proof-of-concept work.
Suggested Items
UHDI Fundamentals: UHDI Drives Unique IoT Innovation—Smart Homes
06/03/2025 | Anaya Vardya, American Standard CircuitsThe combination of UHDI's high-bandwidth capabilities and IoT's real-time data processing can lead to more efficient, immersive, and smarter IoT systems. This convergence of two revolutionary technologies is enabling quantum advancements in some very “unconventional” applications.
Ather Energy, Infineon Technologies Partner to Accelerate India’s Electric Two-wheeler Revolution
05/30/2025 | InfineonAther Energy, a leading electric two-wheeler manufacturer in India and Infineon Technologies Asia Pacific Pte Ltd, a global leader in semiconductor solutions, signed a Memorandum of Understanding (MoU) in Seoul, South Korea, to jointly drive innovation in the electric vehicle (EV) industry in India.
Huawei Single SitePower Solution Creates Four Synergies to Accelerate Site Intelligence
05/27/2025 | PRNewswireDuring the 9th Global ICT Energy Efficiency Summit in Dubai, Huawei showcased its next-generation digital and intelligent site power facility solution Single SitePower, which is set to drive the intelligent transformation of ICT energy infrastructure.
Hitachi Energy, Statnett to Deliver Norway’s First Eco-Efficient Transmission Grid Connection Solution
05/26/2025 | Hitachi EnergyHitachi Energy announces the signing of contracts with Statnett, the Norwegian power system operator, to deliver eco-efficient grid connection solutions in the greater Oslo area.
Dymax to Showcase Light-Cure Solutions at The European Battery Show 2025
05/23/2025 | Dymax CorporationDymax, a global manufacturer of rapid light-curing materials and equipment, will exhibit at The European Battery Show 2025 in Stand 4-C60