Understanding the Generation of Light-Induced Electrical Current in Atomically Thin Nanomaterials
May 23, 2018 | Brookhaven National LaboratoryEstimated reading time: 5 minutes
In this study, the CFN scientists combined atomically thin molybdenum disulfide with quantum dots. Molybdenum disulfide is one of the transition-metal dichalcogenides, semiconducting compounds with a transition-metal (in this case, molybdenum) layer sandwiched between two thin layers of a chalcogen element (in this case, sulfur). To control the interfacial interactions, they designed two kinds of quantum dots: one with a composition that favors charge transfer and the other with a composition that favors energy transfer.
“Both kinds have cadmium selenide at their core, but one of the cores is surrounded by a shell of zinc sulfide,” explained CFN research associate and first author Mingxing Li. “The shell is a physical spacer that prevents charge transfer from happening. The core-shell quantum dots promote energy transfer, whereas the core-only quantum dots promote charge transfer.”
The scientists used the clean room in the CFN Nanofabrication Facility to make devices with the hybrid nanomaterials. To characterize the performance of these devices, they conducted scanning photocurrent microscopy studies with an optical microscope built in-house using existing equipment and the open-source GXSM instrument control software developed by CFN physicist and co-author Percy Zahl. In scanning photocurrent microscopy, a laser beam is scanned across the device while the photocurrent is measured at different points. All of these points are combined to produce an electrical current “map.” Because charge and energy transfer have distinct electrical signatures, scientists can use this technique to determine which process is behind the observed photocurrent response.
The maps in this study revealed that the photocurrent response was highest at low light exposure for the core-only hybrid device (charge transfer) and at high light exposure for the core-shell hybrid device (energy transfer). These results suggest that charge transfer is extremely beneficial to the device functioning as a photodetector, and energy transfer is preferred for photovoltaic applications.
“Distinguishing energy and charge transfers solely by optical techniques, such as photoluminescence lifetime imaging microscopy, is challenging because both processes reduce luminescence lifetime to similar degrees,” said CFN materials scientist and co-corresponding author Chang-Yong Nam. “Our investigation demonstrates that optoelectronic measurements combining localized optical excitation and photocurrent generation can not only clearly identify each process but also suggest potential optoelectronic device applications suitable to each case.”
“At the CFN, we conduct experiments to study how nanomaterials function under real operating conditions,” said Cotlet. “In this case, we combined the optical expertise of the Soft and Bio Nanomaterials Group, device fabrication and electrical characterization expertise of the Electronic Nanomaterials Group, and software expertise of the Interface Science and Catalysis Group to develop a capability at the CFN that will enable scientists to study optoelectronic processes in a variety of 2D materials. The new scanning photocurrent microscopy facility is now open to CFN users, and we hope this capability will draw more users to the CFN fabrication and characterization facilities to study and improve the performance of optoelectronic devices.”
Brookhaven National Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.
Page 2 of 2Testimonial
"We’re proud to call I-Connect007 a trusted partner. Their innovative approach and industry insight made our podcast collaboration a success by connecting us with the right audience and delivering real results."
Julia McCaffrey - NCAB GroupSuggested Items
I-Connect007 Launches Advanced Electronics Packaging Digest
09/15/2025 | I-Connect007I-Connect007 is pleased to announce the launch of Advanced Electronics Packaging Digest (AEPD), a new monthly digital newsletter dedicated to one of the most critical and rapidly evolving areas of electronics manufacturing: advanced packaging at the interconnect level.
Panasonic Industry will Double the Production Capacity of MEGTRON Multi-layer Circuit Board Materials Over the Next Five Years
09/15/2025 | Panasonic Industry Co., Ltd.Panasonic Industry Co., Ltd., a Panasonic Group company, announced plans for a major expansion of its global production capacity for MEGTRON multi-layer circuit board materials today. The company plans to double its production over the next five years to meet growing demand in the AI server and ICT infrastructure markets.
Trouble in Your Tank: Implementing Direct Metallization in Advanced Substrate Packaging
09/15/2025 | Michael Carano -- Column: Trouble in Your TankDirect metallization systems based on conductive graphite are gaining popularity throughout the world. The environmental and productivity gains achievable with this process are outstanding. Direct metallization reduces the costs of compliance, waste treatment, and legal issues related to chemical exposure. A graphite-based direct plate system has been devised to address these needs.
Fresh PCB Concepts: Designing for Success at the Rigid-flex Transition Area
08/28/2025 | Team NCAB -- Column: Fresh PCB ConceptsRigid-flex PCBs come in all shapes and sizes. Manufacturers typically use fire-retardant, grade 4 (FR-4) materials in the rigid section and flexible polyimide materials in the flex region. Because of the small size, some rigid-flex PCBs, like those for hearing aid devices, are among the most challenging to manufacture. However, regardless of its size, we should not neglect the transition area between the rigid and flexible material.
Global Sourcing Spotlight: How to Evaluate Supplier Capabilities Worldwide
08/20/2025 | Bob Duke -- Column: Global Sourcing SpotlightIn global sourcing, the difference between a competitive edge and a catastrophic disruption often comes down to how well you vet your suppliers. Sourcing advanced PCBs, precision components, or materials for complex assemblies demands diligence, skepticism, and more than a little time on airplanes. Here’s how to do your due diligence when evaluating international suppliers and why cutting corners can cost you more than money.