Understanding the Generation of Light-Induced Electrical Current in Atomically Thin Nanomaterials
May 23, 2018 | Brookhaven National LaboratoryEstimated reading time: 5 minutes
In this study, the CFN scientists combined atomically thin molybdenum disulfide with quantum dots. Molybdenum disulfide is one of the transition-metal dichalcogenides, semiconducting compounds with a transition-metal (in this case, molybdenum) layer sandwiched between two thin layers of a chalcogen element (in this case, sulfur). To control the interfacial interactions, they designed two kinds of quantum dots: one with a composition that favors charge transfer and the other with a composition that favors energy transfer.
“Both kinds have cadmium selenide at their core, but one of the cores is surrounded by a shell of zinc sulfide,” explained CFN research associate and first author Mingxing Li. “The shell is a physical spacer that prevents charge transfer from happening. The core-shell quantum dots promote energy transfer, whereas the core-only quantum dots promote charge transfer.”
The scientists used the clean room in the CFN Nanofabrication Facility to make devices with the hybrid nanomaterials. To characterize the performance of these devices, they conducted scanning photocurrent microscopy studies with an optical microscope built in-house using existing equipment and the open-source GXSM instrument control software developed by CFN physicist and co-author Percy Zahl. In scanning photocurrent microscopy, a laser beam is scanned across the device while the photocurrent is measured at different points. All of these points are combined to produce an electrical current “map.” Because charge and energy transfer have distinct electrical signatures, scientists can use this technique to determine which process is behind the observed photocurrent response.
The maps in this study revealed that the photocurrent response was highest at low light exposure for the core-only hybrid device (charge transfer) and at high light exposure for the core-shell hybrid device (energy transfer). These results suggest that charge transfer is extremely beneficial to the device functioning as a photodetector, and energy transfer is preferred for photovoltaic applications.
“Distinguishing energy and charge transfers solely by optical techniques, such as photoluminescence lifetime imaging microscopy, is challenging because both processes reduce luminescence lifetime to similar degrees,” said CFN materials scientist and co-corresponding author Chang-Yong Nam. “Our investigation demonstrates that optoelectronic measurements combining localized optical excitation and photocurrent generation can not only clearly identify each process but also suggest potential optoelectronic device applications suitable to each case.”
“At the CFN, we conduct experiments to study how nanomaterials function under real operating conditions,” said Cotlet. “In this case, we combined the optical expertise of the Soft and Bio Nanomaterials Group, device fabrication and electrical characterization expertise of the Electronic Nanomaterials Group, and software expertise of the Interface Science and Catalysis Group to develop a capability at the CFN that will enable scientists to study optoelectronic processes in a variety of 2D materials. The new scanning photocurrent microscopy facility is now open to CFN users, and we hope this capability will draw more users to the CFN fabrication and characterization facilities to study and improve the performance of optoelectronic devices.”
Brookhaven National Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.
Page 2 of 2Suggested Items
SEMI Applauds New Bill to Clarify Tax Credit Eligibility for Critical Semiconductor Suppliers Under U.S. CHIPS Act
05/12/2025 | SEMISEMI, the industry association serving the global semiconductor and electronics design and manufacturing supply chain, announced support of the Strengthening Essential Manufacturing and Industrial Investment Act (SEMI Investment Act), which clarifies that critical materials suppliers to semiconductor manufacturers are eligible for the Advanced Manufacturing Investment Tax Credit (“Section 48D”) created by the United States CHIPS and Science Act.
Taiwan's PCB Industry Chain Is Expected to Grow Steadily by 5.8% Annually in 2025
05/05/2025 | TPCAAccording to an analysis report jointly released by the Taiwan Printed Circuit Association (TPCA) and the Industrial Technology Research Institute's International Industrial Science Institute, the total output value of Taiwan's printed circuit (PCB) industry chain will reach NT$1.22 trillion in 2024, with an annual growth rate of 8.1%.
New Database of Materials Accelerates Electronics Innovation
05/05/2025 | ACN NewswireIn a collaboration between Murata Manufacturing Co., Ltd., and the National Institute for Materials Science (NIMS), researchers have built a comprehensive new database of dielectric material properties curated from thousands of scientific papers.
DuPont Exceeds Quarterly Profit Expectations as Electronics Segment Benefits from Semiconductor Demand
05/05/2025 | I-Connect007 Editorial TeamDuPont reported higher-than-expected earnings for the first quarter of 2025, supported by increased demand in its electronics and industrial segments. The company’s adjusted earnings per share came in at 79 cents, surpassing the average analyst estimate of 65 cents per share, according to data from LSEG.
SEMICON Europa 2025 Call for Abstracts Opens for Advanced Packaging Conference and MEMS & Imaging Summit
05/05/2025 | SEMISEMI Europe announced the opening of the call for abstracts for SEMICON Europa 2025, to be held November 18-21 at Messe München in Munich, Germany. Selected speakers will share their expertise at the Advanced Packaging Conference (APC), MEMS & Imaging Sensors Summit, and during presentations on the show floor.