Turning Up the Heat on Thermoelectrics
May 29, 2018 | MITEstimated reading time: 6 minutes
In their theoretical modeling, the group calculated lead tin selenide’s ZT, or figure of merit, a quantity that tells you how close your material is to the theoretical limit for generating power from heat. The most efficient materials that have been reported so far have a ZT of about 2. Skinner and Fu found that, under a strong magnetic field of about 30 tesla, lead tin selenide can have a ZT of about 10 — five times more efficient than the best-performing thermoelectrics.
“It’s way off scale,” Skinner says. “When we first stumbled on this idea, it seemed a little too dramatic. It took a few days to convince myself that it all adds up.”
They calculate that a material with a ZT equal to 10, if heated at room temperature to about 500 kelvins, or 440 degrees Fahrenheit, under a 30-tesla magnetic field, should be able to turn 18 percent of that heat to electricity, compared to materials with a ZT equal to 2, which would only be able to convert 8 percent of that heat to energy.
The group acknowledges that, to achieve such high efficiencies, currently available topological semimetals would have to be heated under an extremely high magnetic field that could only be produced by a handful of facilities in the world. For these materials to be practical for use in power plants or automobiles, they should operate in the range of 1 to 2 tesla.
Fu says this should be doable if a topological semimetal were extremely clean, meaning that there are very few impurities in the material that would get in the way of electrons’ flow.
“To make materials very clean is very challenging, but people have dedicated a lot of effort to high-quality growth of these materials,” Fu says.
He adds that lead tin selenide, the material they focused on in their study, is not the cleanest topological semimetal that scientists have synthesized. In other words, there may be other, cleaner materials that may generate the same amount of thermal power with a much smaller magnetic field.
“We can see that this material is a good thermoelectric material, but there should be better ones,” Fu says. “One approach is to take the best [topological semimetal] we have now, and apply a magnetic field of 3 tesla. It may not increase efficiency by a factor of 2, but maybe 20 or 50 percent, which is already a pretty big advance.”
The team has filed a patent for their new thermolelectric approach and is collaborating with Princeton researchers to experimentally test the theory.
The research is supported by the Solid-State Solar Thermal Energy Conversion Center, an Energy Frontier Research Center of U.S. Department of Energy, and by Office of Basic Energy Sciences of U.S. Department of Energy.
Page 2 of 2Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
I-Connect007 Launches Advanced Electronics Packaging Digest
09/15/2025 | I-Connect007I-Connect007 is pleased to announce the launch of Advanced Electronics Packaging Digest (AEPD), a new monthly digital newsletter dedicated to one of the most critical and rapidly evolving areas of electronics manufacturing: advanced packaging at the interconnect level.
Panasonic Industry will Double the Production Capacity of MEGTRON Multi-layer Circuit Board Materials Over the Next Five Years
09/15/2025 | Panasonic Industry Co., Ltd.Panasonic Industry Co., Ltd., a Panasonic Group company, announced plans for a major expansion of its global production capacity for MEGTRON multi-layer circuit board materials today. The company plans to double its production over the next five years to meet growing demand in the AI server and ICT infrastructure markets.
Trouble in Your Tank: Implementing Direct Metallization in Advanced Substrate Packaging
09/15/2025 | Michael Carano -- Column: Trouble in Your TankDirect metallization systems based on conductive graphite are gaining popularity throughout the world. The environmental and productivity gains achievable with this process are outstanding. Direct metallization reduces the costs of compliance, waste treatment, and legal issues related to chemical exposure. A graphite-based direct plate system has been devised to address these needs.
Fresh PCB Concepts: Designing for Success at the Rigid-flex Transition Area
08/28/2025 | Team NCAB -- Column: Fresh PCB ConceptsRigid-flex PCBs come in all shapes and sizes. Manufacturers typically use fire-retardant, grade 4 (FR-4) materials in the rigid section and flexible polyimide materials in the flex region. Because of the small size, some rigid-flex PCBs, like those for hearing aid devices, are among the most challenging to manufacture. However, regardless of its size, we should not neglect the transition area between the rigid and flexible material.
Global Sourcing Spotlight: How to Evaluate Supplier Capabilities Worldwide
08/20/2025 | Bob Duke -- Column: Global Sourcing SpotlightIn global sourcing, the difference between a competitive edge and a catastrophic disruption often comes down to how well you vet your suppliers. Sourcing advanced PCBs, precision components, or materials for complex assemblies demands diligence, skepticism, and more than a little time on airplanes. Here’s how to do your due diligence when evaluating international suppliers and why cutting corners can cost you more than money.