Flexible Organic Electronics Mimic Biological Mechanosensory Nerves
June 1, 2018 | Seoul National UniversityEstimated reading time: 1 minute
Researchers at Seoul National University and Stanford University developed artificial mechanosensory nerves using flexible organic devices to emulate biological sensory afferent nerves. They used the artificial mechanosensory nerves to control a disabled insect leg and distinguish braille characters.
Compared to conventional digital computers, biological nervous system is powerful for real-world problems, such as visual image processing, voice recognition, tactile sensing, and movement control. This inspired scientists and engineers to work on neuromorphic computing, bioinspired sensors, robot control, and prosthetics. The previous approaches involved implementations at the software level on conventional digital computers and circuit designs using classical silicon devices which have shown critical issues related to power consumption, cost, and multifunction.
The research describes artificial mechanosensory nerves based on flexible organic devices to emulate biological mechanosensory nerves. "The recently found mechanisms of information processing in biological mechanosensory nerves were adopted in our artificial system," said Zhenan Bao at Stanford University.
The artificial mechanosensory nerves are composed of three essential components: mechanoreceptors (resistive pressure sensors), neurons (organic ring oscillators), and synapses (organic electrochemical transistors). The pressure information from artificial mechanoreceptors can be converted to action potentials through artificial neurons. Multiple action potentials can be integrated into an artificial synapse to actuate biological muscles and recognize braille characters.
Devices that mimic the signal processing and functionality of biological systems can simplify the design of bioinspired system or reduce power consumption. The researchers said organic devices are advantageous because their functional properties can be tuned, they can be printed on a large area at a low cost, and they are flexible like soft biological systems.
Wentao Xu, a researcher at Seoul National University, and Yeongin Kim and Alex Chortos, graduate students at Stanford University, used their artificial mechanosensory nerves to detect large-scale textures and object movements and distinguish braille characters. They also connected the artificial mechanosensory nerves to motor nerves in a detached insect leg and control muscles.
Professor Tae-Woo Lee, a Professor at Seoul National University said, "Our artificial mechanosensory nerves can be used for bioinspired robots and prosthetics compatible with and comfortable for humans." Lee said, "The development of human-like robots and prosthetics that help people with neurological disabilities can benefit from our work."
Suggested Items
2024 Stromberg Student Leader Scholarship Recipient Announced
11/05/2024 | SMTASMTA is pleased to announce Waad Tarman, Auburn University, has been selected as the recipient of the 2024 JoAnn Stromberg Student Leader Scholarship.
TPCA Signs MOU to Boost Thai PCB Industry Talent Development
10/28/2024 | TPCAAt the 2024 TPCA Show, the Taiwan Printed Circuit Association (TPCA) signed a Memorandum of Understanding (MOU) with four major Thai institutions to enhance talent development in Thailand's growing PCB sector.
Fiona Lam Appointed as CFO for the Agfa-Gevaert Group
10/21/2024 | Agfa-GevaertFiona Lam joins the Agfa-Gevaert Group as Chief Financial Officer and member of the Executive Committee. Current CFO Dirk De Man has decided to take a step back due to health reasons.
TPCA Show 2024 Highlights Taiwan-Thailand Industry-University Collaboration
10/22/2024 | TPCAWith growing investments in Thailand's PCB industry, the 2024 TPCA Show will feature a dynamic "Thailand Theme Zone" to promote collaboration between Taiwanese companies and Thai students.
Schweitzer Engineering Laboratories Accelerates Hiring
09/25/2024 | Schweitzer Engineering LaboratoriesSchweitzer Engineering Laboratories (SEL) announces plans to hire approximately 400 new employee owners throughout the company.