Next-Generation Batteries Market Report
June 12, 2018 | PRNewswireEstimated reading time: 2 minutes
Batteries are considered amongst the most remarkable man-made inventions in history and have been the focus of intense investigation by both scientists and engineers across the globe. Evolving from the primitive Voltaic Pile (the first electrical battery created in 1799), which used zinc and copper electrodes and brine-soaked paper as an electrolyte, a wide range of batteries are now available in the market. Amongst these, lithium-ion (Li-ion) batteries have long been considered a breakthrough in the battery landscape, resulting in revolutionary growth in the chargeable consumer electronics industry. It is estimated that, at present, more than one billion rechargeable Li-ion cells are produced each year to cater to the demands of the portable electronics market alone. However, despite its successful market deployment, excellent energy density and cost-effectiveness, certain limitations, such as concerns related to the use of liquid electrolytes (risk of leakage and flammability), have also been associated with Li-ion batteries. A case-in-point being Samsung's massive global recall of its Galaxy Note 7 series of mobile phones in September 2016, due to the safety issues associated with the Li-ion batteries used in them.
It is also worth highlighting that a wide variety of niche and disparate application areas, such as miniature medical devices, smart wearables, wireless sensors / IoT devices, radio frequency identification (RFID) tags, powered smart cards, cosmetic patches, smart labels / packaging, electric / hybrid vehicles, and energy storage systems have surfaced in the past few years. Most of these advanced technology-enabled applications require new form factors and designs that conventional Li-ion batteries are unable to provide, pertaining to their size and safety limitations. These drawbacks have opened the door to immense innovation opportunities and added a new dimension to the competition amongst global battery developers, resulting in the establishment of next-generation battery technologies.
In contrast to the conventional Li-ion batteries, next-generation product chemistries, which include lithium polymer, solid-state, thin film and printed batteries, have been proven to be safe under abusive conditions, demonstrated significant improvements in terms of overall performance, and are environmental-friendly. Moreover, owing to their flexible form factor, it is believed that these batteries can offer virtually limitless flexibility in term of design, materials and construction. At about 1/10th of the thickness of the thinnest prismatic liquid Li-ion cells, next-generation batteries have demonstrated significant potential to serve various upcoming markets. As a result, these batteries have captured the interest of several stakeholders in this industry; in fact, since 2010, over 7,000 patents have been published on next-generation battery technologies. It is anticipated that as the market becomes more mature, it is likely to benefit from economies of scale, resulting in further performance improvements and cost reductions.
Suggested Items
RF PCB Design Tips and Tricks
05/08/2025 | Cherie Litson, EPTAC MIT CID/CID+There are many great books, videos, and information online about designing PCBs for RF circuits. A few of my favorite RF sources are Hans Rosenberg, Stephen Chavez, and Rick Hartley, but there are many more. These PCB design engineers have a very good perspective on what it takes to take an RF design from schematic concept to PCB layout.
Trouble in Your Tank: Causes of Plating Voids, Pre-electroless Copper
05/09/2025 | Michael Carano -- Column: Trouble in Your TankIn the business of printed circuit fabrication, yield-reducing and costly defects can easily catch even the most seasoned engineers and production personnel off guard. In this month’s column, I’ll investigate copper plating voids with their genesis in the pre-plating process steps.
Elephantech: For a Greener Tomorrow
04/16/2025 | Marcy LaRont, PCB007 MagazineNobuhiko Okamoto is the global sales and marketing manager for Elephantech Inc., a Japanese startup with a vision to make electronics more sustainable. The company is developing a metal inkjet technology that can print directly on the substrate and then give it a copper thickness by plating. In this interview, he discusses this novel technology's environmental advantages, as well as its potential benefits for the PCB manufacturing and semiconductor packaging segments.
Trouble in Your Tank: Organic Addition Agents in Electrolytic Copper Plating
04/15/2025 | Michael Carano -- Column: Trouble in Your TankThere are numerous factors at play in the science of electroplating or, as most often called, electrolytic plating. One critical element is the use of organic addition agents and their role in copper plating. The function and use of these chemical compounds will be explored in more detail.
IDTechEx Highlights Recyclable Materials for PCBs
04/10/2025 | IDTechExConventional printed circuit board (PCB) manufacturing is wasteful, harmful to the environment and energy intensive. This can be mitigated by the implementation of new recyclable materials and technologies, which have the potential to revolutionize electronics manufacturing.