Multiple Lasers Could be Replaced by a Single Microcomb
June 12, 2018 | CHALMERS UNIVERSITY OF TECHNOLOGYEstimated reading time: 2 minutes

Every time we send an e-mail, a tweet, or stream a video, we rely on laser light to transfer digital information over a complex network of optical fibers. Dozens of high-performance lasers are needed to fill up the bandwidth and to squeeze in an increasing amount of digital data. Researchers have now shown that all these lasers can be replaced by a single device called a microcomb.
A microcomb is an optical device that generates very sharp and equidistant frequency lines in a tiny microphotonic chip. This technology was developed about a decade ago and is now reaching a maturity level that enables new applications, including lidar, sensing, timekeeping and of course optical communications.
The soul of a microcomb is a tiny optical cavity that confines laser light in space. Therefore, this technology provides a fantastic playground to explore new nonlinear physical phenomena. These conditions have now been utilised by researchers at Chalmers University of Technology, Sweden, in cooperation with researchers at Purdue University, USA. Victor Torres Company (to the right), Associate Professor at Chalmers, is one of the authors of a paper that was recently published in the journal Nature Communications.
“We observed that the optical frequencies of the microcomb interfered destructively over a short period of time, thus providing the formation of a wave inside the cavity that resembled a ‘hole’ of light. The interesting aspect of this waveform is that it yielded a sufficient amount of power per frequency line, which was essential to achieve these high-performance experiments in fiber communication systems”, says Victor Torres Company.
The physical formation of these “dark” pulses of light is far from being fully understood, but the researchers believe that their unique properties will enable novel applications in fiber-optic communication systems and spectroscopy.
“I will be able to explore these aspects thanks to the financial support of the European Research Council (ERC)”, says Victor Torres Company. “This is a bright start to better understand the formation of dark pulses in microresonators and their potential use in optical communications. The research could lead to faster and more power-efficient optical communication links in the future.”
The results are the fruit of a collaborative effort between researchers at the School of Electrical and Computer Engineering at Purdue University, who fabricated the samples, and the group of Professor Peter Andrekson at the Photonics Laboratory at Chalmers, which hosts world-class experimental facilities for fiber-optic communications research.
“Our findings do not represent the first demonstration of a microcomb in fiber communications, but it is the first time that the microcomb has achieved a performance compatible with the strong demands of future communication systems”, says Peter Andrekson, who is also one of the co-authors of the paper.
The main author is Attila Fülöp, who defended his doctoral thesis “Fiber-optic communications with microresonator frequency combs” at the Photonics Laboratory in April.
“Working with the microcomb and this experiment has been a great experience. This proof-of-concept demonstration has allowed us to explore the requirements for future chip-scale data transmitters while at the same time proving the potential of this very exciting dark pulse comb technology”, he says.
Suggested Items
2025 ASEAN IT Spending Growth Slows to 5.9% as AI-Powered IT Expansion Encounters Post-Boom Normalization
06/26/2025 | IDCAccording to the IDC Worldwide Black Book: Live Edition, IT spending across ASEAN is projected to grow by 5.9% in 2025 — down from a robust 15.0% in 2024.
DownStream Acquisition Fits Siemens’ ‘Left-Shift’ Model
06/26/2025 | Andy Shaughnessy, I-Connect007I recently spoke to DownStream Technologies founder Joe Clark about the company’s acquisition by Siemens. We were later joined by A.J. Incorvaia, Siemens’ senior VP of electronic board systems. Joe discussed how he, Rick Almeida, and Ken Tepper launched the company in the months after 9/11 and how the acquisition came about. A.J. provides some background on the acquisition and explains why the companies’ tools are complementary.
United Electronics Corporation Advances Manufacturing Capabilities with Schmoll MDI-ST Imaging Equipment
06/24/2025 | United Electronics CorporationUnited Electronics Corporation has successfully installed the advanced Schmoll MDI-ST (XL) imaging equipment at their advanced printed circuit board facility. This significant technology investment represents a continued commitment to delivering superior products and maintaining their position as an industry leader in precision PCB manufacturing.
Insulectro & Dupont Host Technology Symposium at Silicon Valley Technology Center June 25
06/22/2025 | InsulectroInsulectro, the largest distributor of materials for use in the manufacture of PCBs and printed electronics, and DuPont, a major manufacturer of flex laminates and chemistry, invite fabricators, OEMS, designers, and engineers to attend an Innovation Symposium – Unlock the Power - this Wednesday, June 25, at DuPont’s Silicon Valley Technology Center in Sunnyvale, CA.
OKI, NTT Innovative Devices Establish Mass Production Technology for High-Power Terahertz Devices by Heterogeneous Material Bonding
06/21/2025 | BUSINESS WIREOKI, in collaboration with NTT Innovative Devices Corporation, has established mass production technology for high-power terahertz devices using crystal film bonding (CFB) technology for heterogeneous material bonding to bond indium phosphide (InP)-based uni-traveling carrier photodiodes (UTC-PD) onto silicon carbide (SiC) with excellent heat dissipation characteristics for improved bonding yields.