Realization of High-Performance Magnetic Sensors Due to Magnetic Vortex Structures
June 14, 2018 | Universität WienEstimated reading time: 2 minutes

Magnetic sensors play a key role in a variety of applications, such as speed and position sensing in the automotive industry or in biomedical applications. Within the framework of the Christian Doppler Laboratory "Advanced Magnetic Sensing and Materials" headed by Dieter Süss novel magnetic sensors have been realized that surpass conventional technologies in performance and accuracy in a cooperation between the University of Vienna, the Danube University Krems and Infineon AG.
Many modern technological applications are based on magnetic forces, e.g. to move components in electric vehicles or to store data on hard disks. Yet magnetic fields are also used as sensors to detect other magnetic fields. The total market for magnetic field sensors based on semiconductor technology currently amounts to USD 1,670 million and continues to grow. In the automotive industry, for example, more precise magnetic field sensors are used in ABS systems which can be used to detect the tire pressure. This eliminates the need for additional pressure sensors in the tires and saves resources and costs. The use of new magnetoresistive sensor technologies such as anisotropic magnetoresistance, giant magnetoresistance and tunnel magnetoresistance is driven primarily by their increased sensitivity and improved integration capability.
The core of novel magnetic field sensors is a microstructured ferromagnetic thin-film element that can convert magnetic signals. This so-called transducer element changes its electrical behavior as soon as a magnetic field is applied from the outside; the atomic "compass needles", the atomic magnetic dipoles, are realigned and thus change the electrical resistance of the transducer element. This behavior is used to determine the magnetic fields.
However, the performance of these sensors is considerably limited by a number of factors. The physical origin and fundamental limits have been analysed in detail by a team led by Dieter Süss in a cooperation between the University of Vienna, the Danube University Krems and Infineon AG in the framework of the Christian Doppler Laboratory "Advanced Magnetic Sensing and Materials". They recently published the results of their investigations and concrete proposals for solutions in the journal Nature Electronics.
By means of computer simulations that have been validated by experiments, the scientists showed that both interference signals, magnetic noise and hysteresis, can be significantly reduced by redesigning the transducer element. In the new design, the atomic magnetic dipoles of the transducer element are aligned in a circle around a center, similar to a hurricane. An externally applied magnetic field changes the position of the centre of this vortex, which in turn leads directly to a change in the electrical resistance. "This development shows the first mass application of magnetic vortex structures and a significant improvement over conventional magnetic sensors," says project leader Dieter Süss. The research project is an excellent example where basic research and purely scientific questions, such as the behaviour of magnetic vortex structures in external magnetic fields, can lead to extremely successful applications. "The prerequisite for this is a cooperation between science and industry, whereby the industry provides both the practically relevant questions as well as technical facilities such as clean rooms for the realisation of these complex technologies", says Süss about this important synergy.
Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
I-Connect007 Launches Advanced Electronics Packaging Digest
09/15/2025 | I-Connect007I-Connect007 is pleased to announce the launch of Advanced Electronics Packaging Digest (AEPD), a new monthly digital newsletter dedicated to one of the most critical and rapidly evolving areas of electronics manufacturing: advanced packaging at the interconnect level.
ICAPE Group Unveils Exclusive Report on Sustainability in Electronics Manufacturing
09/15/2025 | ICAPE GroupICAPE Group, a global leader in printed circuit boards (PCBs) and custom electronics manufacturing, today announces the launch of its 2025 Industry Outlook & Innovation Report: Sustainability in Electronics Manufacturing. This exclusive report is accompanied by fresh insights from a dedicated Statista survey of 100 electronics manufacturing professionals, commissioned by ICAPE Group.
Panasonic Industry will Double the Production Capacity of MEGTRON Multi-layer Circuit Board Materials Over the Next Five Years
09/15/2025 | Panasonic Industry Co., Ltd.Panasonic Industry Co., Ltd., a Panasonic Group company, announced plans for a major expansion of its global production capacity for MEGTRON multi-layer circuit board materials today. The company plans to double its production over the next five years to meet growing demand in the AI server and ICT infrastructure markets.
Sustainability and Selective Soldering
09/15/2025 | Dr. Samuel J. McMaster, Pillarhouse InternationalSustainability is more than just a buzzword for the electronics industry; it’s a key goal for all manufacturing processes. This is more than a box-ticking exercise or simply doing a small part for environmentally friendly processes. Moving toward sustainable solutions drives innovation and operational efficiency.
I-Connect007 Editor’s Choice: Five Must-Reads for the Week
09/12/2025 | Marcy LaRont, I-Connect007We may be post-Labor Day, but it is still hot-hot-hot here in the great state of Arizona—much like our news cycles, which have continued to snap, crackle, and pop with eye-raising headlines over this past week. In broader global tech news this week, AI and tariff-type restrictions continues to dominate with NVIDIA raising its voice against U.S. lawmakers pushing chip restrictions, ASML investing in a Dutch AI start-up company to the tune of $1.5 billion, and the UAE joining the ranks of the U.S. and China in embracing “open source” with their technology in hopes of accelerating their AI position.