Realization of High-Performance Magnetic Sensors Due to Magnetic Vortex Structures
June 14, 2018 | Universität WienEstimated reading time: 2 minutes

Magnetic sensors play a key role in a variety of applications, such as speed and position sensing in the automotive industry or in biomedical applications. Within the framework of the Christian Doppler Laboratory "Advanced Magnetic Sensing and Materials" headed by Dieter Süss novel magnetic sensors have been realized that surpass conventional technologies in performance and accuracy in a cooperation between the University of Vienna, the Danube University Krems and Infineon AG.
Many modern technological applications are based on magnetic forces, e.g. to move components in electric vehicles or to store data on hard disks. Yet magnetic fields are also used as sensors to detect other magnetic fields. The total market for magnetic field sensors based on semiconductor technology currently amounts to USD 1,670 million and continues to grow. In the automotive industry, for example, more precise magnetic field sensors are used in ABS systems which can be used to detect the tire pressure. This eliminates the need for additional pressure sensors in the tires and saves resources and costs. The use of new magnetoresistive sensor technologies such as anisotropic magnetoresistance, giant magnetoresistance and tunnel magnetoresistance is driven primarily by their increased sensitivity and improved integration capability.
The core of novel magnetic field sensors is a microstructured ferromagnetic thin-film element that can convert magnetic signals. This so-called transducer element changes its electrical behavior as soon as a magnetic field is applied from the outside; the atomic "compass needles", the atomic magnetic dipoles, are realigned and thus change the electrical resistance of the transducer element. This behavior is used to determine the magnetic fields.
However, the performance of these sensors is considerably limited by a number of factors. The physical origin and fundamental limits have been analysed in detail by a team led by Dieter Süss in a cooperation between the University of Vienna, the Danube University Krems and Infineon AG in the framework of the Christian Doppler Laboratory "Advanced Magnetic Sensing and Materials". They recently published the results of their investigations and concrete proposals for solutions in the journal Nature Electronics.
By means of computer simulations that have been validated by experiments, the scientists showed that both interference signals, magnetic noise and hysteresis, can be significantly reduced by redesigning the transducer element. In the new design, the atomic magnetic dipoles of the transducer element are aligned in a circle around a center, similar to a hurricane. An externally applied magnetic field changes the position of the centre of this vortex, which in turn leads directly to a change in the electrical resistance. "This development shows the first mass application of magnetic vortex structures and a significant improvement over conventional magnetic sensors," says project leader Dieter Süss. The research project is an excellent example where basic research and purely scientific questions, such as the behaviour of magnetic vortex structures in external magnetic fields, can lead to extremely successful applications. "The prerequisite for this is a cooperation between science and industry, whereby the industry provides both the practically relevant questions as well as technical facilities such as clean rooms for the realisation of these complex technologies", says Süss about this important synergy.
Suggested Items
I-Connect007 Editor’s Choice: Five Must-Reads for the Week
06/27/2025 | Nolan Johnson, I-Connect007While news outside our industry keeps our attention occupied, the big news inside the industry is the rechristening of IPC as the Global Electronics Association. My must-reads begins with Marcy LaRont’s exclusive and informative interview with Dr. John Mitchell, president and CEO of the Global Electronics Association. For designers, have we finally reached the point in time where autorouters will fulfill their potential?
Reflections and Priorities: An Update to I-Connect007 Readers
06/24/2025 | Marcy LaRont, I-Connect007The electronics and manufacturing industry is evolving rapidly—with new technologies, deeper global connections, and a growing drive toward sustainability. To reflect these changes and our place in this dynamic space, we’re refreshing our brand.
The Knowledge Base: Building the Workforce of Tomorrow With EMAC
06/24/2025 | Mike Konrad -- Column: The Knowledge BaseAs the electronics manufacturing industry races to meet rising global demand and technological complexity, the need for a highly skilled, future-ready workforce has never been greater. At the forefront of addressing this challenge is The Electronics Manufacturing & Assembly Collaborative (EMAC)—a national initiative dedicated to strengthening the talent pipeline through strategic collaboration with SMTA, education, and government stakeholders.
IPC Rebrands as Global Electronics Association: Interview With Dr. John W. Mitchell
06/22/2025 | Marcy LaRont, I-Connect007Today, following a major announcement, IPC is embracing the rapid advancement of technology with a bold decision to change its name to the Global Electronics Association. This name more accurately reflects the full breadth of its work and the modern realities of electronics manufacturing. In this exclusive interview, Global Electronics Association President and CEO Dr. John W. Mitchell shares the story behind the rebrand: Why now, what it means for the industry, and how it aligns with the organization’s mission.
Global Electronics Association Debuts; New Name Elevates IPC’s 70-Year Legacy as Voice of $6 Trillion Electronics Industry
06/25/2025 | Global Electronics AssociationToday begins a new chapter for IPC as it officially becomes the Global Electronics Association, reflecting its role as the voice of the electronics industry. Guided by the vision of “Better electronics for a better world,” the Global Electronics Association (electronics.org) is dedicated to enhancing supply chain resilience and promoting accelerated growth through engagement with more than 3,000 member companies, thousands of partners, and dozens of governments across the globe.