Excerpt: The Printed Circuit Designer’s Guide to…Flex and Rigid-Flex Fundamentals
June 25, 2018 | Dave Lackey and Anaya Vardya, American Standard CircuitsEstimated reading time: 8 minutes
Coverlayer and cover coat are terms normally reserved for flexible circuit constructions and they are by default a defining structural element of both flex and rigid flex circuits. Coverlayers serve as a flexible solder mask of sorts, protecting the delicate circuits from damage and potential wicking of solder along circuit traces, while leaving open access to design features where interconnections are to be made to components by soldering.
It is important to determine the thickness of a coverlayer to allow for maximum flexibility when desired, and ensure you have chosen a coverlayer with a sufficient amount of adhesive on it to accommodate the copper weight. Coverlayers are also of importance in the design of areas where the circuit is to be bent either just one time, intermittently, or dynamically, millions or even billions of times over its useful life. The latter case, the dimensions and make of the flexible circuit coverlayer is critical. In dynamic flex circuits, there is need to balance the amount of flexible materials on the sides of the conductors where flexing is to occur. It is important to know and understand that there are different types of materials available for use as coverlayer materials, and that there is no single, ideal solution. These material choices include: materials that are laminated to the copper circuits using heat and pressure; materials that can be laminated and then pho toimaged, like solder mask, to define points of connection; and materials that are simply screen printed on to seal traces, while leaving open features of interest for further processing or for making interconnections.
Number of Flex Layers
The clear majority of flexible circuits have just one or two metal layers. However, an increasing number of high-performance products now require high layer counts and high density interconnect (HDI) design techniques. As layer count increases, so does the need for control in design generation to accommodate manufacturing process realities. It is also worth noting, while on the topic of layer count, that stiffness increases as a cube of thickness. That is, if one doubles its thickness, the stiffness goes up eightfold (23 = 8), and thus small increases in thickness due to increases in layer count can greatly decrease circuit flexibility. The converse is also true, of course. The following are some key concerns to be understood and addressed in the design process relative to flex layer count.
As is the case with any multilayer construction, core thickness must be provided with the assumption that copper is clad on at least one surface. The core thickness is generally understood to be the thickness of the dielectric material between the copper layers. The core material can be a simple single-sided piece of copper clad polymer, or it can be clad with copper on both sides. Many different core thicknesses are commonly available for flexible circuits, but the most common is 75 mm, typically comprised of 25 mm of base polymer (e.g., poly imide, polyester) with 25 mm of adhesive (e.g., acrylic, modified epoxy) on either side to bond copper foil to the surface of the base polymer. Thinner and thicker core materials can be procured both with and without adhesive. It is recommended that designers check with their flex vendors for both their recommendations and the availability of the chosen material.
While the discussion so far been limited to flexible circuit core material, rigid materials are employed in the fabrication of rigid-flex circuits. Of course, any of the myriad core materials used in rigid multilayer circuits are also available to make rigid-flex circuits. However, once again, it is advisable to check with the flex manufacturer for advice as to what options are most common and readily available.
Separation Distance Between Flex Circuit Cores
When a product requires two or more cores, there is a need to define in the specification what the spacing requirements are between cores. The spacing can impact product performance (physical and electrical) and, most obviously, thickness. In some designs, the spacing between flex circuit cores may be filled with dielectric material, but with other designs the dielectric between flex cores in the flex area may be omitted to assure maximum flexibility (Figure 2).
Figure 2: Bonded vs. unbonded flex.
If the core layers must be unbonded, this should be noted in the documentation. Those areas where bonding is to be avoided should be identified in the design artwork package. The unbonded areas must have a coverlayer applied to each exposed side (Figures 2 and 3). In laminated areas, it is not required and arguably a liability when plated through-hole reliability through the assembly process is considered. Obviously, in areas where interconnection is required between multiple layers of internal circuits, a dielectric is required as shown in Figure 2. In the next installment we will continue this three-part series by addressing circuit layup symmetry, designing for bending, and controlled impedance.
Dave Lackey is vice president of business development at American Standard Circuits.
Anaya Vardya is CEO of American Standard Circuits.
This article originally appeared in the April 2018 issue of Flex007 Magazine, click here.
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
Indium Corporation Promotes Two Leaders in EMEA (Europe, Middle East, and Africa) Markets
08/05/2025 | Indium CorporationWith its commitment to innovation and growth through employee development, Indium Corporation today announced the promotions of Andy Seager to Associate Director, Continental Sales (EMEA), and Karthik Vijay to Senior Technical Manager (EMEA). These advancements reflect their contributions to the company’s continued innovative efforts with customers across Europe, the Middle East, and Africa (EMEA).
MacDermid Alpha Electronics Solutions Unveils Unified Global Website to Deepen Customer, Talent, and Stakeholder Engagement
07/31/2025 | MacDermid Alpha Electronics SolutionsMacDermid Alpha Electronics Solutions, the electronics business of Elements Solutions Inc, today launched macdermidalpha.com - a unified global website built to deepen digital engagement. The launch marks a significant milestone in the business’ ongoing commitment to delivering more meaningful, interactive, and impactful experiences for its customers, talent, and stakeholders worldwide.
KOKI to Showcase Analytical Services and New HF1200 Solder Paste at SMTA Guadalajara 2025
07/31/2025 | KOKIKOKI, a global leader in advanced soldering materials and process optimization services, will exhibit at the SMTA Guadalajara Expo & Tech Forum, taking place September 17 & 18, 2025 at Expo Guadalajara, Salón Jalisco Halls D & E in Guadalajara, Mexico.
Weller Tools Supports Future Talent with Exclusive Donation to SMTA Michigan Student Soldering Competition
07/23/2025 | Weller ToolsWeller Tools, the industry leader in hand soldering solutions, is proud to announce its support of the upcoming SMTA Michigan Expo & Tech Forum by donating a limited-edition 80th Anniversary Black Soldering Set to the event’s student soldering competition.
Koh Young Appoints Tom Hattori as President of Koh Young Japan
07/21/2025 | Koh YoungKoh Young Technology, the global leader in True 3D measurement-based inspection solutions, announced the appointment of Tom Hattori as President of Koh Young Japan (JKY).