Shedding Light on Tomorrow’s Solar Energy
June 25, 2018 | A*STAREstimated reading time: 2 minutes

The Sun is becoming an increasingly important source of clean electricity. Accurate sunlight forecasts being developed by A*STAR researchers could greatly improve the performance of solar energy plants, making it a viable alternative to carbon-based sources of power.
A photovoltaic power plant can cover up to 50 square kilometers of the Earth’s surface and can generate up to a billion Watts of electricity. This capacity depends on the amount of sunlight at that location, so the ability to predict solar irradiance is crucial for knowing how much power the plant will contribute to the grid on any particular day.
“Forecasting is a key step in integrating renewable energy into the electricity grid,” says Dazhi Yang from A*STAR’s Singapore Institute of Manufacturing Technology (SIMTech). “It is an emerging subject that requires a wide spectrum of cross-disciplinary knowledge, such as statistics, data science, or machine learning.”
Yang, together with Hao Quan from the A*STAR Experimental Power Grid Centre and colleagues from the University of Tennessee at Chattanooga and the National University of Singapore, has developed a numerical approach to weather prediction that efficiently combines multiple datasets to improve the accuracy of solar irradiation forecasts.
Hourly changes in the atmosphere, annual changes in the distance between Earth and the Sun, or 10-yearly changes in the Sun’s internal cycles can all alter the amount of sunlight that reaches the Earth's surface. These changes occur on very different time scales, and so conventional forecasting methods model variability at different timescales separately, which makes computer processing easier. However, these methods rely on a simple addition of forecasts, with no weighting that makes more use of better forecast sub-series. Moreover, the forecasts they generate are only accurate on the timescale of the original series.
Yang and the team developed a framework that reconciles the different timescales by forming a temporal hierarchy that aggregates forecasts obtained at different timescales, such as high-frequency, hourly data and low-frequency, daily data. “Temporal reconciliation is a type of ensemble forecasting model that forecasts the next day's solar generation many times, separately, using data of different temporal granularities, hourly, two-hourly, and daily,” explains Yang. “These different forecasts are then combined optimally through statistical models to produce a final forecast.”
The researchers tested their numerical weather prediction method using data from 318 photovoltaic power plant sites in California over a year. Their temporal reconciliation method was shown to significantly outperform other numerical day-ahead forecasts.
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
Advanced Packaging-to-Board-Level Integration: Needs and Challenges
09/15/2025 | Devan Iyer and Matt Kelly, Global Electronics AssociationHPC data center markets now demand components with the highest processing and communication rates (low latencies and high bandwidth, often both simultaneously) and highest capacities with extreme requirements for advanced packaging solutions at both the component level and system level. Insatiable demands have been projected for heterogeneous compute, memory, storage, and data communications. Interconnect has become one of the most important pillars of compute for these systems.
Procense Raises $1.5M in Seed Funding to Accelerate AI-Powered Manufacturing
09/11/2025 | BUSINESS WIREProcense, a San Francisco-based industrial automation startup developing cutting-edge AI and remote sensing technologies for process manufacturers has raised $1.5 million in a seed funding round led by Kevin Mahaffey, Business Insider’s #1 seed investor of 2025 and HighSage Ventures, a Boston-based family office that primarily invests in public and private companies in the global software, internet, consumer, and financial technology sectors.
Zuken Announces E3.series 2026 Release for Accelerated Electrical Design and Enhanced Engineering Productivity
09/10/2025 | ZukenZuken reveals details of the upcoming 2026 release of E3.series, which will introduce powerful new features aimed at streamlining electrical and fluid design, enhancing multi-disciplinary collaboration, and boosting engineering productivity.
AI Infrastructure Boosts Global Semiconductor Revenue Growth to 17.6% in 2025
09/09/2025 | IDCAccording to the Worldwide Semiconduct o r Technology and Supply Chain Intelligence service from International Data Corporation (IDC), worldwide semiconductor revenue is expected to reach $800 billion in 2025, growing 17.6% year-over-year from $680 billion in 2024. This follows a strong rebound in 2024, when revenue grew by 22.4% year-over-year.
I-Connect007 Editor’s Choice: Five Must-Reads for the Week
09/05/2025 | Andy Shaughnessy, I-Connect007It’s almost fall here in Atlanta, and that means that the temperature is finally dropping. And it quit raining! It’s been raining since March, and I’m so over it, as the social influencers say. Last night we grilled out on the deck, and it wasn’t hot, and we didn’t get rained on. Life is good. It was a busy week in the industry. In this installment of my must-reads, we say goodbye to Walt Custer, the man who made PCB data points interesting for the rest of us.