Heat-conducting Crystals Could Help Computer Chips Keep Their Cool
July 6, 2018 | UT DallasEstimated reading time: 4 minutes
Since then, Lv’s work at UT Dallas has focused on optimizing the crystal-growing process to boost the material’s performance.
“We have been working on this research for the last three years, and now have gotten the thermal conductivity up to about 1,000 watts per meter-kelvin, which is second only to diamond in bulk materials,” Lv said.
Lv worked with postdoctoral research associate Dr. Sheng Li, co-lead author of the study, and physics doctoral student Xiaoyuan Liu, also a study author, to create the high thermal conductivity crystals using a technique called chemical vapor transport. The raw materials — the elements boron and arsenic — are placed in a chamber that is hot on one end and cold on the other. Inside the chamber, another chemical transports the boron and arsenic from the hot end to the cooler end, where the elements combine to form crystals.
“To jump from our previous results of 200 watts per meter-kelvin up to 1,000 watts per meter-kelvin, we needed to adjust many parameters, including the raw materials we started with, the temperature and pressure of the chamber, even the type of tubing we used and how we cleaned the equipment,” Lv said.
Dr. David Cahill and Dr. Pinshane Huang’s research groups at the University of Illinois at Urbana-Champaign played a key role in the current work, studying defects in the boron arsenide crystals by state-of-the-art electron microscopy and measuring the thermal conductivity of the very small crystals produced at UT Dallas.
“We measure the thermal conductivity using a method developed at Illinois over the past dozen years called ‘time-domain thermoreflectance’ or TDTR,” said Cahill, professor and head of the Department of Materials Science and Engineering and a corresponding author of the study. “TDTR enables us to measure the thermal conductivity of almost any material over a wide range of conditions and was essential for the success of this work.”
The way heat is dissipated in boron arsenide and other crystals is linked to the vibrations of the material. As the crystal vibrates, the motion creates packets of energy called phonons, which can be thought of as quasiparticles carrying heat. Lv said the unique features of boron arsenide crystals — including the mass difference between the boron and arsenic atoms — contribute to the ability of the phonons to travel more efficiently away from the crystals.
“I think boron arsenide has great potential for the future of electronics,” Lv said. “Its semiconducting properties are very comparable to silicon, which is why it would be ideal to incorporate boron arsenide into semiconducting devices.”
Lv said that while the element arsenic by itself can be toxic to humans, once it is incorporated into a compound like boron arsenide, the material becomes very stable and nontoxic.
The next step in the work will include trying other processes to improve the growth and properties of this material for large-scale applications, Lv said.
Page 2 of 2Suggested Items
Indium Corporation Expert to Present on Automotive and Industrial Solder Bonding Solutions at Global Electronics Association Workshop
06/26/2025 | IndiumIndium Corporation Principal Engineer, Advanced Materials, Andy Mackie, Ph.D., MSc, will deliver a technical presentation on innovative solder bonding solutions for automotive and industrial applications at the Global Electronics A
Gorilla Circuits Elevates PCB Precision with Schmoll’s Optiflex II Alignment System
06/23/2025 | Schmoll MaschinenGorilla Circuits, a leading PCB manufacturer based in Silicon Valley, has enhanced its production capabilities with the addition of Schmoll Maschinen’s Optiflex II Post-Etch Punch system—bringing a new level of precision to multilayer board fabrication.
Day 1: Cutting Edge Insights at the EIPC Summer Conference
06/17/2025 | Pete Starkey, I-Connect007The European Institute for the PCB Community (EIPC) Summer Conference took place this year in Edinburgh, Scotland, June 3-4. This is the second of three articles on the conference. The other two cover the keynote speeches and Day 2 of the technical conference. Below is a recap of the first day’s sessions.
American Made Advocacy: Supporting the Entire PCB Ecosystem—Materials to OEMs
06/17/2025 | Shane Whiteside -- Column: American Made AdvocacyWith the addition of RTX to PCBAA’s membership roster, we now represent the interests of companies in the entire PCB ecosystem. From material providers to OEMs, the insights of our collective members help us educate, advocate, and support legislation and policy favorable to America’s microelectronics manufacturers. The industry veterans who lead these companies provide valuable perspective, and their accumulated wisdom makes us an even stronger association.
Ventec Strengthens Commitment to Halogen-Free PCB Manufacturing in Europe
06/11/2025 | Ventec International GroupVentec International Group, the PCB materials innovator, manufacturer, supplier and one-stop shop for copper clad laminates, prepregs, as well as process consumables and PCB manufacturing equipment has established volume inventory of halogen-free FR4.1 and FR15.1 PCB materials at its European hub in Germany.