Improving Biosensors for Implantable Sensing
July 25, 2018 | EPFLEstimated reading time: 2 minutes

EPFL scientists have developed new nanotube biosensors using synthetic biology, which improves their sensing capabilities in complex biofluids, such as blood and urine. The study is published in the Journal of Physical Chemistry Letters.
Biosensors are devices that can detect biological molecules in air, water, or blood. They are widely used in drug development, medical diagnostics, and biological research. The growing need for continuous, real-time monitoring of biomarkers in diseases like diabetes is currently driving efforts to develop efficient and portable biosensor devices.
Some of the most promising optical biosensors currently being developed are made using single-walled carbon nanotubes. The near-infrared light emission of the carbon nanotubes lies within the optical transparency window of biological materials. This means water, blood, and tissue such as skin do not absorb the emitted light, making these biosensors ideal for implantable sensing applications. These sensors can thus be placed underneath the skin and the optical signal can still be detected without the need to have electrical contacts piercing through the surface.
However, the omnipresence of salts in biofluids creates a pervasive challenge in designing the implantable devices. Fluctuations in salt concentrations that naturally occur in the body have been shown to affect the sensitivity and selectivity of optical sensors based on single-walled carbon nanotubes wrapped with single-stranded DNA.
In order to overcome some of these challenges, a team of researchers from the lab of Ardemis Boghossian at EPFL engineered stable optical nanotube sensors using synthetic biology. The use of synthetic biology imparts increased stability to the optical biosensors, making them more suitable for use in biosensing applications in complex fluids such as blood or urine and even inside the human body.
"What we did was wrap nanotubes with 'xeno' nucleic acids (XNA), or synthetic DNA that can tolerate the variation in salt concentrations that our bodies naturally undergo, to deliver a more stable signal," says Ardemis Boghossian. Alice Gillen, the lead author of the paper, led the efforts in studying how certain salts affect the optical emission of the biosensors.
The study covers varying ion concentrations within the physiological ranges found in common biofluids. By monitoring both the intensity of the nanotubes' signal and shifting of the signal's wavelength, the researchers were able to verify that the bioengineered sensors showed greater stability over a larger range of salt concentrations than the DNA sensors traditionally used in the field.
"This is really the first time a true synthetic biology approach is being used in the field of nanotube optics," says Boghossian. "We think these results are encouraging for developing the next generation of optical biosensors that are more promising for implantable sensing applications such as continuous monitoring.”
Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
Integrating Uniplate PLBCu6 With the Digital Factory Suite
09/12/2025 | Giovanni Obino and Andreas Schatz, MKS' AtotechPrinted circuit board manufacturing is rapidly changing, driven by miniaturization, stringent reliability requirements, and growing pressure for sustainable production. Meeting these challenges requires more than incremental improvements; it demands a combination of precise equipment and real-time process intelligence. The pairing of Uniplate® PLBCu6 with the Digital Factory Suite (DFS) demonstrates how hardware and software can work together to create more responsive, resource-efficient manufacturing.
Smart Automation: Odd-form Assembly—Dedicated Insertion Equipment Matters
09/09/2025 | Josh Casper -- Column: Smart AutomationLarge, irregular, or mechanically unique parts, often referred to as odd-form components, have never truly disappeared from electronics manufacturing. While many in the industry have been pursuing miniaturization, faster placement speeds, and higher-density PCBs, certain market sectors are moving in the opposite direction.
Weaning the U.S. Military Off a Tablet Supply Chain That Leads to China
09/08/2025 | Jim Will, USPAETablet computers are essential to how our military fights, moves and sustains, but these devices are built on a fragile global supply chain with strong ties to China. Building domestic manufacturing to eliminate this vulnerability is feasible if we tap into the information and capabilities that already exist and create strong demand for tablets produced by trusted and assured sources.
Standard of Excellence: The Human Touch in an Automated World
08/27/2025 | Anaya Vardya -- Column: Standard of ExcellenceWe live in a world where everything from groceries to tech support is a click away. Automation has revolutionized the way we conduct business. From order tracking systems to AI-powered chatbots, automation can increase speed, improve accuracy, and reduce costs. However, with all that progress comes a critical challenge: How do we ensure that we don’t lose the human touch, the very thing that makes business relationships meaningful?
Marcy’s Musings: Continuing to Invent the Future With SEL
08/19/2025 | Marcy LaRont -- Column: Marcy's MusingsTwo years ago, PCB007 Magazine devoted an issue to Schweitzer Engineering Labs (SEL), a new captive greenfield PCB facility in Moscow, Idaho. We highlighted some of the most cutting-edge achievements in facility layout, design, and equipment in the PCB fabrication industry. SEL was a shining example of what was possible, providing insight and inspiration to PCB fabricators looking toward growth and expansion.