'Tornado' Lab-On-A-Chip Technology with Micro Tweezers to Detect Dangerous Viruses, Biological Contaminants
August 2, 2018 | Purdue UniversityEstimated reading time: 1 minute

Purdue University researchers have developed a new class of optical nanotweezers that can trap and detect biomolecules, viruses and DNA more rapidly. The technology can also use light to promptly detect cancer or improve the production of medications, an important step forward as nearly half of Americans have used at least one prescription drug within the past month.
Image Caption: This image shows plasmonic nanotweezers for the lab-on-a-chip technology and the experimental setup used for excitation of the plasmonic nanostructure and imaging of the motion of suspended tracer particles.
The researchers developed a nanostructured plasmonic metafilm by perforating nanoscale holes in a gold film. Then, the metafilm acts as tweezers to capture and trap tiny particles by focusing light onto specific spots on the film and by heating up those spots and creating local thermal gradients in the ambient liquid. This produces a small tornado-like effect.
“All of this is resulting in a revolutionary compact lab-on-a-chip – an innovative approach to detecting and diagnosing a tumor or a viral disease,” said Alexander Kildishev, an associate professor with Purdue’s School of Electrical and Computer Engineering, who helped lead the research team.
The Purdue plasmonic metafilms use a combination of thermal and electric fields to create hydrodynamic flows that result in the rapid transport of suspended particles, bringing them to the surface of the metal film for easy trapping and detection.
Another advantage of the new system is the increased ability to sort these tiny particles and then collectively detect sorted patterns such as drug contaminants or water impurities. The technology has potential applications for pharmaceuticals, biohazard detection and water quality tests.
“To our knowledge, our plasmonic nanotweezers are more robust in trapping and detecting molecules than previous comparable lab-on-a-chip systems,” Kildishev said. “Our system also provides better sensitivity and consumes less laser power. We have created an advanced self-contained lab-on-a-chip platform that allows us to trap and detect dangerous particles such as drug and water contaminants and remove them from liquids.”
“Our system is very flexible to control and provides a broad range of functionality,” Kildishev said. “We use multifunctional, inexpensive light sources to outperform more expensive alternatives.”
The Purdue nanotweezers could be also used with these inexpensive broadband light sources for combining noble metal and dielectric nanoparticles, which could have applications for long-lasting, non-fading color printing.
Suggested Items
Driving Innovation: Direct Imaging vs. Conventional Exposure
07/01/2025 | Simon Khesin -- Column: Driving InnovationMy first camera used Kodak film. I even experimented with developing photos in the bathroom, though I usually dropped the film off at a Kodak center and received the prints two weeks later, only to discover that some images were out of focus or poorly framed. Today, every smartphone contains a high-quality camera capable of producing stunning images instantly.
Specially Developed for Laser Plastic Welding from LPKF
06/25/2025 | LPKFLPKF introduces TherMoPro, a thermographic analysis system specifically developed for laser plastic welding that transforms thermal data into concrete actionable insights. Through automated capture, evaluation, and interpretation of surface temperature patterns immediately after welding, the system provides unprecedented process transparency that correlates with product joining quality and long-term product stability.
United Electronics Corporation Advances Manufacturing Capabilities with Schmoll MDI-ST Imaging Equipment
06/24/2025 | United Electronics CorporationUnited Electronics Corporation has successfully installed the advanced Schmoll MDI-ST (XL) imaging equipment at their advanced printed circuit board facility. This significant technology investment represents a continued commitment to delivering superior products and maintaining their position as an industry leader in precision PCB manufacturing.
IBM, RIKEN Unveil First IBM Quantum System Two Outside of the U.S.
06/24/2025 | IBMIBM and RIKEN, a national research laboratory in Japan, today unveiled the first IBM Quantum System Two ever to be deployed outside of the United States and beyond an IBM Quantum Data Center.
Excellon Installs COBRA Hybrid Laser at Innovative Circuits
06/23/2025 | ExcellonExcellon is pleased to announce the successful installation of a second COBRA Hybrid Laser System at Innovative Circuits, located in Alpharetta, Georgia. The Excellon COBRA Hybrid Laser System uniquely combines both UV and CO₂ (IR) laser sources on a single platform—making it ideal for high-density prototype and production printed circuit boards (PCBs).