Texas Engineers Work with Uber and Army Research Labs on uberAIR
August 15, 2018 | Cockrell School of Engineering at The University of Texas at AustinEstimated reading time: 2 minutes

Researchers in the Cockrell School of Engineering at The University of Texas at Austin will work with the U.S. Army Research Labs (ARL) and Uber Elevate to help develop new rotor technology for vehicles that will be used in Uber’s proposed urban aviation ride-share network — called uberAIR.
Last year, Uber announced that the first Uber Elevate cities would be Dallas (DFW metroplex) and Los Angeles, with a goal of flight demonstrations in 2020 and plans to make uberAIR commercially available to riders in those cities by 2023. As part of the uberAIR program, the company has entered into partnerships with several major aircraft manufacturers and signed a space act agreement with NASA, which will stimulate the development of new unmanned traffic management concepts and aerial safety systems.
The design of the vertical take-off and landing (VTOL) aircraft to be used in the project specifies that it is a fully electric vehicle with a cruising speed of 150-200 mph, a cruising altitude of 1,000-2,000 feet and the ability to complete trips of up to 60 miles on a single charge.
“UT is uniquely positioned to contribute to this new technology, and Uber has recognized that,” said Jayant Sirohi, associate professor in UT’s Department of Aerospace Engineering and Engineering Mechanics and the UT team leader on the project. “In addition to the technical expertise we bring to this area, we also already have a rig to test new rotor configurations right here on campus.”
Sirohi is one of the country’s leading experts in unmanned aerial vehicle (UAV) technology, VTOL aircraft and fixed- and rotary-wing aeroelasticity. He and his team, which includes postdoctoral fellow Christopher Cameron and Charles Tinney from UT’s Applied Research Laboratories, will explore the efficiency and noise signature of stacked co-rotating rotors, or propellers, for VTOL, a novel flying technology in which two rotor systems are stacked on top of each other and rotating in the same direction.
Preliminary testing of this concept has shown the potential for stacked co-rotating rotors to be more efficient than other approaches while simultaneously improving versatility and overall performance for a flying craft.
Both of the proposed Uber Elevate launch cities suffer from major traffic congestion, especially during rush hour. For example, the current drive from DFW International Airport to the nearby city of Frisco, a distance of less than 25 miles, could take up to an hour during rush hour. In an uberAIR vehicle, it could take less than 10 minutes.
Suggested Items
I-Connect007 Editor’s Choice: Five Must-Reads for the Week
06/27/2025 | Nolan Johnson, I-Connect007While news outside our industry keeps our attention occupied, the big news inside the industry is the rechristening of IPC as the Global Electronics Association. My must-reads begins with Marcy LaRont’s exclusive and informative interview with Dr. John Mitchell, president and CEO of the Global Electronics Association. For designers, have we finally reached the point in time where autorouters will fulfill their potential?
Knocking Down the Bone Pile: Tin Whisker Mitigation in Aerospace Applications, Part 3
06/25/2025 | Nash Bell -- Column: Knocking Down the Bone PileTin whiskers are slender, hair-like metallic growths that can develop on the surface of tin-plated electronic components. Typically measuring a few micrometers in diameter and growing several millimeters in length, they form through an electrochemical process influenced by environmental factors such as temperature variations, mechanical or compressive stress, and the aging of solder alloys.
RTX, the Singapore Economic Development Board Sign MOU Outlining 10-year Growth Roadmap
06/20/2025 | RTXRTX and the Singapore Economic Development Board (EDB) have signed a Memorandum of Understanding (MoU) which outlines a 10-year roadmap to further long-term strategic collaboration in Singapore.
Indra Signs Agreement with AXISCADES to Boost Production of Cutting-Edge Systems in India
06/18/2025 | PRNewswireParis Air Show -- Indra and the Indian technology company AXISCADES have signed an agreement to collaborate on the production of solutions for the aerospace and defense markets.
GKN Aerospace Delivers First High Voltage EWIS System for Clean Aviation’s SWITCH Project
06/16/2025 | GKN AerospaceGKN Aerospace has completed and delivered the first high voltage Electrical Wiring Interconnection System (EWIS) for the Clean Aviation SWITCH project.