Reconstructing Skin on a Chip
August 16, 2018 | A*STAREstimated reading time: 2 minutes

Microfluidics could fulfill a growing need for alternatives to animal testing for the development of pharmaceuticals and cosmetics. A multidisciplinary team, led by Zhiping Wang from the A*STAR Singapore Institute of Manufacturing Technology, and Paul Bigliardi from the A*STAR Institute of Medical Biology, have produced a scalable credit-card sized device that simultaneously facilitates skin cell culture and testing.
Image Caption: Microfluidic skin-on-a-chip device working as an open system (A), a lidded bioreactor (B), and an in vitro analysis system fitted with an open (C) or a capped inset (D). The close-up shows a graphic representation of a functionality test on skin-on-chip equivalents under dynamic flow conditions.
State-of-the-art alternatives to animal testing rely on reconstructed skin. However, these three-dimensional tissue models are typically generated from static cell cultures on a collagen matrix that readily shrinks. “When collagen contracts, we don't know whether compounds under investigation are going through the skin or through gaps between the device and the skin during permeation tests,” explains Gopu Sriram, one of the lead authors. To address these problems, the researchers developed a method to grow skin on a matrix using the protein fibrin, preventing skin contraction. The skin is grown directly in the microfluidic device where the tests are conducted, without further manipulation or transfer.
Skin cultured in the microfluidic device exhibited enhanced maturation of the epidermis, the top protective layer of the skin. This translated to a nearly two-fold increase in epidermis thickness compared to standard skin equivalents. “This enhanced epidermis correlated with lower chemical permeability than in conventional systems,” says Yuri Dancik, another lead author. “Compared to conventional skin reconstruction, the skin-on-chip platform offers better skin morphology and performance, in terms of barrier function,” adds Wang. It can also facilitate downstream assays using commercially available skin equivalents or natural skin.
According to Massimo Alberti, another lead author, these enhancements stem from the use of microfluidics. Under static conditions, nutrients and medium passively diffuse through the skin. By contrast, in the microfluidic chip, a continuous flow generates pressure that pushes the culture medium through the matrix and may act as a “stressor for the cells and the extracellular matrix, which may also activate some mechanically-triggered signaling pathways,” he says. This stimulation also promotes the formation of a superior basement membrane, a “Velcro-like protein layer that anchors the epidermis to the connective tissue called dermis,” says Sriram.
In addition to automating their system, the researchers are currently working to improve their model to better mimic natural human skin. They plan to increase the complexity of their model by adding immune cells and enhancing its barrier function. They are also optimising the microfluidic device by simulating blood flow dynamics and implementing additional microenvironment controls “to promote conditions that will bring the system closer to human skin,” says Alberti.
Testimonial
"We’re proud to call I-Connect007 a trusted partner. Their innovative approach and industry insight made our podcast collaboration a success by connecting us with the right audience and delivering real results."
Julia McCaffrey - NCAB GroupSuggested Items
VIDEOTON EAS's Bulgarian Subsidiary Expands Into Automotive Products
09/15/2025 | VideotonVEAS Bulgaria, engaged in electronics manufacturing, has joined the ranks of VIDEOTON companies authorized to produce automotive products.
Variosystems Strengthens North American Presence with Southlake Relaunch 2025
09/15/2025 | VariosystemsVariosystems celebrated the relaunch of its U.S. facility in Southlake, Texas. After months of redesign and reorganization, the opening marked more than just the return to a modernized production site—it was a moment to reconnect with our teams, partners, and the local community.
Hanwha Aerospace to Collaborate with BAE Systems on Advanced Anti-jamming GPS for Guided Missiles
09/15/2025 | HanwhaHanwha Aerospace has signed a contract with BAE Systems to integrate next-generation, anti-jamming Global Positioning System (GPS) technology into Hanwha Aerospace’s Deep Strike Capability precision-guided weapon system.
EV Group Achieves Breakthrough in Hybrid Bonding Overlay Control for Chiplet Integration
09/12/2025 | EV GroupEV Group (EVG), a leading provider of innovative process solutions and expertise serving leading-edge and future semiconductor designs and chip integration schemes, today unveiled the EVG®40 D2W—the first dedicated die-to-wafer overlay metrology platform to deliver 100 percent die overlay measurement on 300-mm wafers at high precision and speeds needed for production environments. With up to 15X higher throughput than EVG’s industry benchmark EVG®40 NT2 system designed for hybrid wafer bonding metrology, the new EVG40 D2W enables chipmakers to verify die placement accuracy and take rapid corrective action, improving process control and yield in high-volume manufacturing (HVM).
AV Switchblade 600 Loitering Munition System Achieves Pivotal Milestone with First-Ever Air Launch from MQ-9A
09/12/2025 | BUSINESS WIREAeroVironment, Inc. (AV) a global leader in intelligent, multi-domain autonomous systems, announced its Switchblade 600 loitering munition system (LMS) has achieved a significant milestone with its first-ever air launch from an MQ-9A Reaper Unmanned Aircraft System (UAS).