Low Bandwidth? Use More Colors at Once
August 17, 2018 | Purdue UniversityEstimated reading time: 2 minutes

The rainbow is not just colors – each color of light has its own frequency. The more frequencies you have, the higher the bandwidth for transmitting information.
Image Caption: New ultrathin nanocavities with embedded silver strips have streamlined color production, and therefore broadened possible bandwidth, for both today’s electronics and future photonics. (Purdue University image/Alexander Kildishev)
Only using one color of light at a time on an electronic chip currently limits technologies based on sensing changes in scattered color, such as detecting viruses in blood samples, or processing airplane images of vegetation when monitoring fields or forests.
Putting multiple colors into service at once would mean deploying multiple channels of information simultaneously, broadening the bandwidth of not only today’s electronics, but also of the even faster upcoming “nanophotonics” that will rely on photons – fast and massless particles of light – rather than slow and heavy electrons to process information with nanoscale optical devices.
IBM and Intel have already developed supercomputer chips that combine the higher bandwidth of light with traditional electronic structures.
As researchers engineer solutions for eventually replacing electronics with photonics, a Purdue University-led team has simplified the manufacturing process that allows utilizing multiple colors at the same time on an electronic chip instead of a single color at a time.
The researchers also addressed another issue in the transition from electronics to nanophotonics: The lasers that produce light will need to be smaller to fit on the chip.
"A laser typically is a monochromatic device, so it’s a challenge to make a laser tunable or polychromatic,” said Alexander Kildishev, associate professor of electrical and computer engineering at Purdue University. “Moreover, it’s a huge challenge to make an array of nanolasers produce several colors simultaneously on a chip.”
Image Caption: Purdue researchers Alexandra Boltasseva, Amr Shaltout, Alexander Kildishev, Vlad Shalaev and Jongbum Kim (not pictured) are investigating ways to harness the bandwidth of light for faster electronics. (Purdue University image provided by Alexander Kildishev)
This requires downsizing the “optical cavity,” which is a major component of lasers. For the first time, researchers from Purdue, Stanford University and the University of Maryland embedded so-called silver “metasurfaces” – artificial materials thinner than light waves – in nanocavities, making lasers ultrathin.
"Optical cavities trap light in a laser between two mirrors. As photons bounce between the mirrors, the amount of light increases to make laser beams possible," Kildishev said. "Our nanocavities would make on-a-chip lasers ultrathin and multicolor."
Currently, a different thickness of an optical cavity is required for each color. By embedding a silver metasurface in the nanocavity, the researchers achieved a uniform thickness for producing all desired colors. Their findings appear in Nature Communications.
"Instead of adjusting the optical cavity thickness for every single color, we adjust the widths of metasurface elements," Kildishev said.
Optical metasurfaces could also ultimately replace or complement traditional lenses in electronic devices.
"What defines the thickness of any cell phone is actually a complex and rather thick stack of lenses," Kildishev said. "If we can just use a thin optical metasurface to focus light and produce images, then we wouldn't need these lenses, or we could use a thinner stack."
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
Global Interposer Market to Surge Nearly Fivefold by 2034
09/15/2025 | I-Connect007 Editorial TeamRevenue for the global interposer market is projected to climb from $471 million in 2025 to more than $2.3 billion by 2034, according to a new report from Business Research Insights. The growth represents a CAGR of nearly 20 percent over the forecast period.
ICAPE Group Unveils Exclusive Report on Sustainability in Electronics Manufacturing
09/15/2025 | ICAPE GroupICAPE Group, a global leader in printed circuit boards (PCBs) and custom electronics manufacturing, today announces the launch of its 2025 Industry Outlook & Innovation Report: Sustainability in Electronics Manufacturing. This exclusive report is accompanied by fresh insights from a dedicated Statista survey of 100 electronics manufacturing professionals, commissioned by ICAPE Group.
Sustainability and Selective Soldering
09/15/2025 | Dr. Samuel J. McMaster, Pillarhouse InternationalSustainability is more than just a buzzword for the electronics industry; it’s a key goal for all manufacturing processes. This is more than a box-ticking exercise or simply doing a small part for environmentally friendly processes. Moving toward sustainable solutions drives innovation and operational efficiency.
Smartphone Production Rises 4% QoQ in 2Q25 as Inventory Adjustment Ends
09/12/2025 | TrendForceTrendForce’s latest investigations reveal that global smartphone production reached 300 million units in 2Q25, up 4% QoQ and 4.8% YoY, driven by seasonal demand and the recovery of brands such as Oppo and Transsion following inventory adjustments.
I-Connect007 Editor’s Choice: Five Must-Reads for the Week
09/12/2025 | Marcy LaRont, I-Connect007We may be post-Labor Day, but it is still hot-hot-hot here in the great state of Arizona—much like our news cycles, which have continued to snap, crackle, and pop with eye-raising headlines over this past week. In broader global tech news this week, AI and tariff-type restrictions continues to dominate with NVIDIA raising its voice against U.S. lawmakers pushing chip restrictions, ASML investing in a Dutch AI start-up company to the tune of $1.5 billion, and the UAE joining the ranks of the U.S. and China in embracing “open source” with their technology in hopes of accelerating their AI position.