Researchers Reveal Ultrahigh Electrochemical Sensing of Heavy Metal Ions via Defect and Phase-Engineering
August 28, 2018 | Chinese Academy of SciencesEstimated reading time: 1 minute
In a paper published in Chemical Communications, the research group jointly led by Prof. HUANG Xingjiu from Institute of Intelligent Machines, Hefei Institutes of Physical Science prepared Mn-MoS2 Nanosheets for ultrasensitive electrochemical detection of heavy metal ions.
The team found for the first time that chemical interactions between Pb(II) and actived S atoms in Mn-MoS2 facilitate the electron transfer and in situ catalytic redox reactions.
Using nanomaterials to modify the electrochemical electrode is an effective method to improve the electrochemical-sensing performance. There is no doubt that adsorption capability plays a significant role in electrochemical detection.
However, previous work mostly focused on enhancing the electrochemical-sensing performance via increasing the adsorption capability while ignoring the interaction mechanism between active sites and analyte. The mechanism remains unclear—particularly the difference in effect on electron transfer and catalysis between physical and chemical interactions, which limits the development of electrochemical sensing.
In this work, the team reported an ultrahigh Pb(II) electrochemical sensing via Mn-mediated MoS2 nanosheets.
The chemical interaction between Pb(II) and S atoms was caused by defect- and phase-engineering—these were significant factors. The EXAFS results demonstrated that single Mn atoms were successfully doped into the MoS2 nanosheets via substitution of Mo sites.
A new phase, 1T-MoS2, emerged after Mn-mediating in pure 2H-MoS2. The heteroatom Mn could destabilize the lattice and introduce S vacancy defects, accompanied by an S plane that might glide due to the electron-donating nature of Mn.
The rich S vacancy and distinct 1T-phase-embedding give Mn-MoS2 good electronic properties. Due to the stimulated activity of S atoms, chemical interactions (Pb-S bonding) were found between Pb(II) and Mn-MoS2.
This suggested that the stronger chemical effects facilitate the electron transfer and significantly promote in situ reduction and re-oxidation relative to the weak physical adsorption interactions.
These findings stimulate new opportunities for enhancing the electrochemical sensitivity and for investigating the atomic-level electrochemical behavior by defect- and phase-engineering.
Fig. 1 The influence of physical and chemical interaction on electron transfer. (Image by ZHOU Wenyi)
Suggested Items
The Knowledge Base: The Impact of Harsh Environments on Residue Tolerance
11/26/2024 | Mike Konrad -- Column: The Knowledge BaseElectronic devices are ubiquitous, performing critical functions in a wide range of applications, from consumer electronics to aerospace, medical devices, automotive systems, and industrial control systems. Many of these devices operate in harsh environments characterized by extremes in temperature, humidity, pollution, and chemical exposure.
AIM to Present on High Reliability and Highlight NC259FPA Ultrafine No Clean Solder Paste at SMTA Penang Expo & Tech Forum
08/30/2024 | AIM SolderAIM Solder, a leading global manufacturer of solder assembly materials for the electronics industry, is pleased to announce its participation in the upcoming SMTA Penang Expo & Tech Forum taking place September 25-26 at AC Hotel Penang in Malaysia.
AIM to Highlight H10 Halogen Free Solder Paste at Productronica India
08/21/2024 | AIMAIM Solder, a leading global manufacturer of solder assembly materials for the electronics industry, is pleased to announce their participation in the upcoming Productronica India taking place September 11-13 at India Exposition Mart Limited (IEML), Greater Noida, Delhi.
AIM to Highlight H10 at the SMTA Space Coast Expo & Tech Forum
10/17/2023 | AIM SolderAIM Solder is pleased to announce their participation in the upcoming SMTA Space Coast Expo & Tech Forum taking place on November 1, 2023, at the Melbourne Auditorium in Melbourne, Florida.
AIM to Highlight H10 at the Expo Proveedor Industrial Matamoros 2023
05/15/2023 | AIM SolderAIM Solder, a leading global manufacturer of solder assembly materials for the electronics industry, is pleased to announce their participation in the upcoming Expo Proveedor Industrial Matamoros 2023 taking place on May 23 and 24 at the Holiday Inn Hotel Convention Center in Matamoros, Tamaulipas, Mexico.