Scientists Make New Transistors That Work Without Electricity
August 28, 2018 | Chinese Academy of SciencesEstimated reading time: 1 minute
Chinese researchers developed new transistors with all optical inputs which could work without electricity supporting making them applicable in some electricity forbidden environment.
Transistors are the most important semiconductor components widely used in electronic equipment like computer, mobile phone and TV.
The transistors have two electric inputs: gate and source. A feature of the transistors is that its output current can be tuned by the gate electric input.
By replacing the gate electric input of transistor with a light input or by adding an extra light input, phototransistors have been developed that can tune the output current using light, which is widely used as light controlled switches in some devices.
However, both for transistors and for phototransistors, the output currents all depend on the source electric input, the new type of transistors with all optical gate and source inputs have not been developed.
Recently, researchers developed transistors with all optical inputs for the first time (Figure a).
This new device could output electronic current signal under near-infrared source light illumination, and interestingly, this current signal could be enhanced for 100 times by another gate ultra-violet light (Figure b).
This device shows transistor-like characteristics but do not require any electric power supply, thereby is called as all-optical-input transistor.
The characteristic of light controlled photocurrent enhancement is due to the light controlled Schottky barrier of the Ag/TiO2 junction.
The formation of the Schottky barrier at the Ag/TiO2 is due to the chemisorbed oxygen on the surface of TiO2, the height of this barrier can be decreased by the ultraviolet light through an oxygen desorption process. When the hot electrons cross the Ag/TiO2 Schottky barrier, the decreased Schottky barrier can enable more electrons to pass through to generate higher hot-electron photocurrent (Figure c).
Thus, the output photocurrent induced by the source light can be controlled enhanced by the gate light, realizing the light controlled photocurrent enhancement.
This all-optical-input transistor could realize photoelectric signal conversion and modulation. Moreover, considering that this type of transistor could work without the support of electricity, making it may be used in special environments that prohibit the use of electricity, e.g., flammable gas environments.
(a-b) Structural schematic and energy band diagram for the Ag/TiO2 all-optical-input transistor. (c) The photocurrent enhancement effect: the output current (Iout) before and after adding the gate light. (Image by GAO Xudong)
Suggested Items
Wolfspeed Stock Soars After Filing for Chapter 11 Bankruptcy
07/01/2025 | I-Connect007 Editorial TeamOn July 1, Wolfspeed shares doubled following the company’s announcement on June 30 that it had filed for Chapter 11 bankruptcy protection.
Crusoe Announces Strategic European Expansion with First Data Center in Norway, Partnering with Polar
06/19/2025 | Globe NewswireCrusoe, the industry’s first vertically integrated AI infrastructure provider, announced a strategic partnership with Polar to establish Crusoe’s first data center presence in mainland Europe.
Happy’s Tech Talk #39: PCBs Replace Motor Windings
06/12/2025 | Happy Holden -- Column: Happy’s Tech TalkThe age of electric vehicles has arrived. If we can improve energy storage, lower the price tag of batteries, andmake them work at lower temperatures, EVs may become our favorite mode of transportation. Certainly, the motors are going through a massive change. Figure 1 shows a typical EV motor.
Indium Joins Virginia Tech Center for Power Electronics Systems Industry Consortium
06/03/2025 | Indium CorporationIndium Corporation®, a leading materials refiner, smelter, manufacturer, and supplier to the global electronics, semiconductor, thin-film, and thermal management markets, has joined Virginia Tech’s Center for Power Electronics Systems (CPES), an industry consortium that supports power electronics initiatives to reduce energy use while growing capability.
IPC Launches New Wire Harness Design Course Led by Defense Industry Expert
06/03/2025 | I-Connect007 Editorial TeamIPC is expanding its educational offerings with a new online course designed to provide foundational knowledge in wire harness and cable design. The course, Introduction to Wire Harness Design I, is led by a seasoned mechanical engineer and subject matter expert in military cable systems working at FNSS Defense Systems in Turkey.