New Sensor Could Help Doctors Monitor Patient Progress from a Distance
August 29, 2018 | University of WaterlooEstimated reading time: 1 minute
A self-powered sensor developed at the University of Waterloo could allow doctors to remotely monitor the recovery of surgical patients.
The small, tube-like device is designed to be fitted to braces after joint surgery to wirelessly send information to computers, smartphones or smartwatches to track range of motion and other indicators of improvement.
“That data would be continuously collected, so it would be as though the physician or physiotherapist was always there, always observing the patient,” said Hassan Askari, an engineering doctoral candidate at Waterloo.
The same sensor could also be used in a variety of other ways, including in the tires of autonomous vehicles to detect and respond to icy roads.
A prototype built and tested by the researchers combines electromagnetism and triboelectricity, a relatively new energy harvesting technique that involves bringing different materials together to produce current.
When bent or twisted, the device generates enough electricity for sensing and powering electronic circuits for processing and wireless signal transmission.
“The aim was to develop a sensor that works without having a battery attached to it,” said Askari. “It is its own power source.”
That makes the device well-suited for applications that put a premium on reliability and where it would be difficult or expensive to replace worn-out batteries.
Askari estimated the sensors – about six centimetres long and one centimetre wide - could be commercially manufactured for $5 to $10 each.
Research is now focused on making them smaller and more sensitive using triboelectricity alone. Software is also being developed to process signals for the tire application.
When attached to the inside of tires, they could sense changing road conditions and instantly send information to control systems to enable self-driving vehicles to make adjustments.
“Based on the forces, the interaction between the road and the tires, we could actually detect ice or rain,” said Askari. “That is extremely important information for autonomous driving.”
Askari collaborated at Waterloo with fellow PhD student Ehsan Asadi, and engineering professors Amir Khajepour and Mir Behrad Khamesee, as well as doctoral student Zia Saadatnia and professor Jean Zu at the University of Toronto.
Suggested Items
2025 ASEAN IT Spending Growth Slows to 5.9% as AI-Powered IT Expansion Encounters Post-Boom Normalization
06/26/2025 | IDCAccording to the IDC Worldwide Black Book: Live Edition, IT spending across ASEAN is projected to grow by 5.9% in 2025 — down from a robust 15.0% in 2024.
Rethinking How Operators Interface With the Line
06/11/2025 | Nolan Johnson, SMT007 MagazineJurgen Schmerler, CEO of WaveOn, reveals how AI and large language models are revolutionizing electronics manufacturing. By integrating AI with machinery, operators can access real-time, multimodal information for troubleshooting and maintenance, significantly reducing training time and enhancing efficiency. He discusses the industry's challenges, the customizable knowledge bases, and the future of proactive maintenance and process control.
Standards: The Roadmap for Your Ideal Data Package
05/29/2025 | Andy Shaughnessy, Design007 MagazineIn this interview, IPC design instructor Kris Moyer explains how standards can help you ensure that your data package has all the information your fabricator and assembler need to build your board the way you designed it, allowing them to use their expertise. As Kris says, even with IPC standards, there’s still an art to conveying the right information in your documentation.
Future-proofing Electronics: ChemFORWARD Works Toward Collaboration for Safer Chemistry
05/19/2025 | Rachel Simon, ChemFORWARDThe electronics industry is facing a critical juncture. As consumer demand for sustainable products rises and regulatory pressures intensify, companies must prioritize the safety of their products and processes. This means not only complying with evolving chemical restrictions but also proactively seeking safer alternatives.
CACI’s Mission-Critical Technology will Accelerate the Delivery of Electronic Warfighting Capabilities to the U.S. Navy’s Existing Fleet
05/13/2025 | CACI International Inc.CACI International Inc announced today that it has been awarded additional work by the U.S. Navy to procure enhancements to the current fielded Shipboard Information Warfare Exploit system under its existing contract for Spectral, a next-generation shipboard signals intelligence (SIGINT), electronic warfare (EW), and information operations (IO) weapon system.