Part-Organic Invention Can Be Used in Bendable Mobile Phones
October 8, 2018 | Australian National UniversityEstimated reading time: 2 minutes

Engineers at ANU have invented a semiconductor with organic and inorganic materials that can convert electricity into light very efficiently, and it is thin and flexible enough to help make devices such as mobile phones bendable.
The invention also opens the door to a new generation of high-performance electronic devices made with organic materials that will be biodegradable or that can be easily recycled, promising to help substantially reduce e-waste.
The huge volumes of e-waste generated by discarded electronic devices around the world is causing irreversible damage to the environment. Australia produces 200,000 tonnes of e-waste every year—only 4% of this waste is recycled.
The organic component has the thickness of just one atom—made from just carbon and hydrogen—and forms part of the semiconductor that the ANU team developed. The inorganic component has the thickness of around two atoms. The hybrid structure can convert electricity into light efficiently for displays on mobile phones, televisions and other electronic devices.
Lead senior researcher Associate Professor Larry Lu said the invention was a major breakthrough in the field.
"For the first time, we have developed an ultra-thin electronics component with excellent semiconducting properties that is an organic-inorganic hybrid structure and thin and flexible enough for future technologies, such as bendable mobile phones and display screens," said Associate Professor Lu from the ANU Research School of Engineering.
PhD researcher Ankur Sharma, who recently won the ANU 3-Minute Thesis competition, said experiments demonstrated the performance of their semiconductor would be much more efficient than conventional semiconductors made with inorganic materials such as silicon.
"We have the potential with this semiconductor to make mobile phones as powerful as today's supercomputers," said Mr Sharma from the ANU Research School of Engineering.
"The light emission from our semiconducting structure is very sharp, so it can be used for high-resolution displays and, since the materials are ultra-thin, they have the flexibility to be made into bendable screens and mobile phones in the near future."
The team grew the organic semiconductor component molecule by molecule, in a similar way to 3D printing. The process is called chemical vapour deposition.
"We characterised the opto-electronic and electrical properties of our invention to confirm the tremendous potential of it to be used as a future semiconductor component," Associate Professor Lu said.
"We are working on growing our semiconductor component on a large scale, so it can be commercialised in collaboration with prospective industry partners."
Suggested Items
Indium’s Karthik Vijay to Present on Dual Alloy Solder Paste Systems at SMTA’s Electronics in Harsh Environments Conference
05/06/2025 | Indium CorporationIndium Corporation Technical Manager, Europe, Africa, and the Middle East Karthik Vijay will deliver a technical presentation on dual alloy solder paste systems at SMTA’s Electronics in Harsh Environments Conference, May 20-22 in Amsterdam, Netherlands.
From Execution to Intelligence: A Data-driven Approach to Modern Manufacturing
05/06/2025 | Barry Matties, I-Connect007In this discussion, Augusto Vilarinho, an MES expert at Critical Manufacturing, explores the essential functions of MES in tracking and tracing shop floor activities where AI and machine learning capabilities are purposely built into the MES through it's embedded data platform, capturing all machine data, integrating and connecting with different systems, ERPs, physical equipment, and people.
Libra Industries Boosts SMT and Electronics Manufacturing Capabilities in Dallas, Texas
05/06/2025 | Libra IndustriesLibra Industries is excited to announce the latest upgrades to its surface mount technology (SMT) capabilities at its Dallas, Texas facility.
KYZEN’s Adam Klett to Present at 2025 SMTA Electronics in Harsh Environments Conference
05/05/2025 | KYZEN'KYZEN, the global leader in innovative environmentally responsible cleaning chemistries, announced today that Director of Science Adam Klett, PhD will present during the technical conference at the 2025 SMTA Electronics in Harsh Environments Conference.
The Government Circuit: Trump’s Trade War Disrupts the Electronics Ecosystem
05/06/2025 | Chris Mitchell -- Column: The Government CircuitThere is certainly no shortage of work to be done in the IPC Government Relations department, as the U.S. waged a tariff campaign on practically every industrial country in the world and several countries embarked on high-tech initiatives with a mix of approaches to the crucial foundations of electronics manufacturing. Indeed, the breadth and speed of U.S. President Donald Trump’s tariff campaign continues to be a serious challenge for our industry.