Bringing Photonic Signaling to Digital Microelectronics
November 5, 2018 | DARPAEstimated reading time: 2 minutes

Parallelism – or the act of several processors simultaneously executing on an application or computation – has been increasingly embraced by the microelectronics industry as a way of sustaining demand for increased system performance. Today, parallel computing architectures have become pervasive across all application domains and system scales – from multicore processing units in consumer devices to high-performance computing in DoD systems. However, the performance gains from parallelism are increasingly constrained not by the computational limits of individual nodes, but rather by the movement of data between them. When residing on modern multi-chip modules (MCMs), these nodes rely on electrical links for short-reach connectivity, but once systems scale to the circuit board level and beyond, the performance of electrical links rapidly degrades, requiring large amounts of energy to move data between integrated circuits. Expanding the use of optical rather than electrical components for data transfer could help significantly reduce energy consumption while increasing data capacity, enabling the advancement of massive parallelism.
“Today, microelectronic systems are severely constrained by the high cost of data movement, whether measured in terms of energy, footprint, or latency,” said Dr. Gordon Keeler, program manager in DARPA’s Microsystems Technology Office (MTO). “Efficient photonic signaling offers a path to disruptive system scalability because it eliminates the need to keep data local, and it promises to impact data-intensive applications, including machine learning, large scale emulation, and advanced sensors.”
Photonic transceiver modules already enable optical signaling over long distances with high bandwidth and minimal loss using optical fiber. Bottlenecks result, however, when data moves between optical transceivers and advanced integrated circuits in the electrical domain, which significantly limits performance. Integrating photonic solutions into the microelectronics package would remove this limitation and enable new levels of parallel computing.
A new DARPA program, the Photonics in the Package for Extreme Scalability (PIPES) program, seeks to enable future system scalability by developing high-bandwidth optical signaling technologies for digital microelectronics. Working across three technical areas, PIPES aims to develop and embed integrated optical transceiver capabilities into cutting-edge MCMs and create advanced optical packaging and switching technologies to address the data movement demands of highly parallel systems. The efficient, high-bandwidth, package-level photonic signaling developed through PIPES will be important to a number of emerging applications for both the commercial and defense sectors.
The first technical area of the PIPES program is focused on the development of high-performance optical input/output (I/O) technologies packaged with advanced integrated circuits (ICs), including field programmable gate arrays (FPGAs), graphics processing units (GPUs), and application-specific integrated circuits (ASICs). Beyond technology development, the program seeks to facilitate a domestic ecosystem to support wider deployment of resulting technologies and broaden their impact.
Projections of historic scaling trends predict the need for enormous improvements in bandwidth density and energy consumption to accommodate future microelectronics I/O. To help address this challenge, the second technical area will investigate novel component technologies and advanced link concepts for disruptive approaches to highly scalable, in-package optical I/O for unprecedented throughput.
The successful development of package-level photonic I/O from PIPES’ first two technical areas will create new challenges for systems architects. The development of massively interconnected networks with distributed parallelism will create hundreds to thousands of nodes that will be exceedingly difficult to manage. To help address this complexity, the third technical area of the PIPES program will focus on the creation of low-loss optical packaging approaches to enable high channel density and port counts, as well as reconfigurable, low-power optical switching technologies.
Testimonial
"We’re proud to call I-Connect007 a trusted partner. Their innovative approach and industry insight made our podcast collaboration a success by connecting us with the right audience and delivering real results."
Julia McCaffrey - NCAB GroupSuggested Items
Procense Raises $1.5M in Seed Funding to Accelerate AI-Powered Manufacturing
09/11/2025 | BUSINESS WIREProcense, a San Francisco-based industrial automation startup developing cutting-edge AI and remote sensing technologies for process manufacturers has raised $1.5 million in a seed funding round led by Kevin Mahaffey, Business Insider’s #1 seed investor of 2025 and HighSage Ventures, a Boston-based family office that primarily invests in public and private companies in the global software, internet, consumer, and financial technology sectors.
Zuken Announces E3.series 2026 Release for Accelerated Electrical Design and Enhanced Engineering Productivity
09/10/2025 | ZukenZuken reveals details of the upcoming 2026 release of E3.series, which will introduce powerful new features aimed at streamlining electrical and fluid design, enhancing multi-disciplinary collaboration, and boosting engineering productivity.
AI Infrastructure Boosts Global Semiconductor Revenue Growth to 17.6% in 2025
09/09/2025 | IDCAccording to the Worldwide Semiconduct o r Technology and Supply Chain Intelligence service from International Data Corporation (IDC), worldwide semiconductor revenue is expected to reach $800 billion in 2025, growing 17.6% year-over-year from $680 billion in 2024. This follows a strong rebound in 2024, when revenue grew by 22.4% year-over-year.
I-Connect007 Editor’s Choice: Five Must-Reads for the Week
09/05/2025 | Andy Shaughnessy, I-Connect007It’s almost fall here in Atlanta, and that means that the temperature is finally dropping. And it quit raining! It’s been raining since March, and I’m so over it, as the social influencers say. Last night we grilled out on the deck, and it wasn’t hot, and we didn’t get rained on. Life is good. It was a busy week in the industry. In this installment of my must-reads, we say goodbye to Walt Custer, the man who made PCB data points interesting for the rest of us.
Walt Custer: Making Data Interesting
09/03/2025 | Andy Shaughnessy, I-Connect007I just learned that IPC Hall of Famer Walt Custer has passed away at 81. I first met Walt about 20 years ago when I started covering the fabrication industry. Right away, he started telling me which companies to watch and which trends to follow. This was in the years following 9/11, and things were still pretty fluid.