Next-Gen Batteries Possible With New Engineering Approach
November 15, 2018 | Pennsylvania State UniversityEstimated reading time: 2 minutes

Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.
The researchers developed a three-dimensional, cross-linked polymer sponge that attaches to the metal plating of a battery anode.
"This project aims to develop the next generation of metal batteries," said Donghai Wang, professor of mechanical engineering and the principal investigator of the project. "Lithium metal has been tried in batteries for decades, but there are some fundamental issues that inhibit their advancement."
Under additional strain, like in the fast-charging methods desired in electrical vehicles, lithium ion (Li) batteries are vulnerable to dendritic growth — needle-like formations that can reduce cycle life and potentially cause safety issues — including fires or explosions.
"Our approach was to use a polymer on the interface of Li metal," Wang explained. The material acts as a porous sponge that not only promotes ion transfer, but also inhibits deterioration. This allowed the metal plating to be free of dendrites, even at low temperatures and fast charge conditions."
Wang, who is an affiliated faculty member at the Penn State Institutes of Energy and the Environment, also belongs to the Battery Energy and Storage Technology Center, a leading research institute in energy storage.
A critical component of both IEE and the BEST Center's mission, this project brought together researchers from different disciplines within the University. "The collaboration in this cohort really helped drive this paper forward," Wang explained. "It allowed us to examine the different aspects of this problem, from materials science, chemical engineering, chemistry, and mechanical engineering perspectives."
In this collaborative work, Long-Qing Chen's group in the Department of Materials Science and Engineering conducted modeling work to understand the improvement of Li metal anodes.
The practical applications of this work could enable more powerful and stable metal battery technologies integral to everyday life, according to the researchers. "In an electric vehicle, it could increase the range of a drive before needing a charge by hundreds of miles," Wang said. "It could also give smartphones a longer battery life."
Looking to the future, the team will explore the practical applications in a large-format battery cell to demonstrate its advantages and feasibility. Wang said, "We want to push these technologies forward. With this work, I'm positive we can double the life cycle of these Li metal batteries."
Penn State researchers Guoxing Li and Qingquan Huang, postdoctoral fellows in mechanical engineering; Zhe Liu, graduate student in materials science and engineering; Yue Gao, graduate student in chemistry; Michael Regula, graduate student in chemical engineering; and Daiwei Wang graduate student in mechanical engineering, also contributed to the project.
The U.S Department of Energy funded this research.
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
Intel Announces Key Leadership Appointments to Accelerate Innovation and Strengthen Execution
09/09/2025 | Intel CorporationIntel Corporation today announced a series of senior leadership appointments that support the company’s strategy to strengthen its core product business, build a trusted foundry, and foster a culture of engineering across the business.
Cadence to Acquire Hexagon’s Design & Engineering Business
09/08/2025 | Cadence Design SystemsCadence announced it has entered into a definitive agreement to acquire the Design & Engineering (D&E) business of Hexagon AB, which includes its MSC Software business—a pioneer in engineering simulation and analysis solutions.
Marcy’s Musings: Continuing to Invent the Future With SEL
08/19/2025 | Marcy LaRont -- Column: Marcy's MusingsTwo years ago, PCB007 Magazine devoted an issue to Schweitzer Engineering Labs (SEL), a new captive greenfield PCB facility in Moscow, Idaho. We highlighted some of the most cutting-edge achievements in facility layout, design, and equipment in the PCB fabrication industry. SEL was a shining example of what was possible, providing insight and inspiration to PCB fabricators looking toward growth and expansion.
Advint and SanRex Expand High-Performance DC Rectifier Access for North American PCB Fabricators
08/12/2025 | Advint IncorporatedAdvint Incorporated has entered a strategic partnership with SanRex Corporation, enhancing access to industrial-grade DC rectifiers for the US printed circuit board industry. With a legacy of power innovation and performance across the globe, SanRex rectifiers are available through Advint’s proficient distribution network.
Review: PCEA Orange County Summer Meeting
08/06/2025 | Dan Feinberg, Technology Editor, I-Connect007The Printed Circuit Engineering Association (PCEA) represents a community of engineers, designers, and industry influencers dedicated to the advancement of PCB technology, design, and manufacturing, and the growth and knowledge of its membership. PCEA regularly hosts events to share the latest developments, best practices, and visions for the future of electronic design and manufacturing. The Orange County chapter seems to be one of the largest and most active ones and I was invited to attend the latest chapter event on July 24 in Costa Mesa, California.