Feeling the Pressure With Universal Tactile Imaging
November 15, 2018 | Osaka UniversityEstimated reading time: 2 minutes
Touch, or tactile sensing, is fundamentally important for a range of real-life applications, from robotics to surgical medicine to sports science. Tactile sensors are modeled on the biological sense of touch and can help researchers to understand human perception and motion. Researchers from Osaka University have now developed a new approach to pressure distribution measurement using tactile imaging technology.
Pressure is one of the primary characteristics of touch, and tactile imaging can be used to measure pressure or stress distributions across an object of interest. The most common current approach to tactile imaging involves use of an array of sensors composed of pressure-sensitive materials. However, such arrays require complex fabrication processes and place limitations on the sensor design, hence the necessity of a new method.
This is the sensor principle and illustration of the relationship between the electrical contact resistance and the contact pressure.
"The pressure between two conductors is directly related to the electrical contact resistance between them," states Osaka University's Osamu Oshiro. "We used this relationship to develop a sensor composed of a pair of electromechanically coupled conductors, where one conductor had a driving function and the other performed the probe function. This sensor has no need for pressure-sensitive materials and is simpler to manufacture."
This strategy enabled development of a universal tactile sensor for contact pressure distribution measurement using simple conductive materials such as carbon paint. The design concept combined innovation in mechatronics technology, which enabled development of a flexible sensor based on conventional conductors connected to electrodes, with a tomography-based approach to determining the pressure distribution across the coupled conductors.
The proposed method improved on previous electrical impedance tomography-based tactile sensing techniques to provide sensors with high positional accuracy, adjustable sensitivity and range, and a relatively simple fabrication process. "The sensors can be realized using various conducting materials, including conductive fabrics and paints," says lead author Shunsuke Yoshimoto. "Sheet-type flexible sensors were fabricated, along with finger-shaped sensors produced by coating 3D-printed structures with conductive paint, to illustrate possible practical applications."
The ease of adjustment of the sensitivity and sensing range and the pressure estimation precision means that this tactile imaging approach is expected to enable advanced control of multipurpose robots. "These sensors are expected to be applicable in fields including remote device operation and industrial automation," states co-author Yoshihiro Kuroda.
About Osaka University
Osaka University was founded in 1931 as one of the seven imperial universities of Japan and now has expanded to one of Japan's leading comprehensive universities.?The University has now embarked on open research revolution from a position as Japan's most innovative university and among the most innovative institutions in the world according to Reuters 2015 Top 100 Innovative Universities and the Nature Index Innovation 2017. The university's ability to innovate from the stage of fundamental research through the creation of useful technology with economic impact stems from its broad disciplinary spectrum.
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
Fresh PCB Concepts: Designing for Success at the Rigid-flex Transition Area
08/28/2025 | Team NCAB -- Column: Fresh PCB ConceptsRigid-flex PCBs come in all shapes and sizes. Manufacturers typically use fire-retardant, grade 4 (FR-4) materials in the rigid section and flexible polyimide materials in the flex region. Because of the small size, some rigid-flex PCBs, like those for hearing aid devices, are among the most challenging to manufacture. However, regardless of its size, we should not neglect the transition area between the rigid and flexible material.
Global Sourcing Spotlight: How to Evaluate Supplier Capabilities Worldwide
08/20/2025 | Bob Duke -- Column: Global Sourcing SpotlightIn global sourcing, the difference between a competitive edge and a catastrophic disruption often comes down to how well you vet your suppliers. Sourcing advanced PCBs, precision components, or materials for complex assemblies demands diligence, skepticism, and more than a little time on airplanes. Here’s how to do your due diligence when evaluating international suppliers and why cutting corners can cost you more than money.
Insulectro and Electroninks Sign North American Distribution Agreement
08/12/2025 | InsulectroElectroninks, a leader in metal organic decomposition (MOD) inks for additive manufacturing and advanced semiconductor packaging, today announced a strategic collaboration and distribution partnership with Insulectro, a premier distributor of materials used in printed electronics and advanced interconnect manufacturing.
Happy’s Tech Talk #41: Sustainability and Circularity for Electronics Manufacturing
08/13/2025 | Happy Holden -- Column: Happy’s Tech TalkI attended INEMI’s June 12 online seminar, “Sustainable Electronics Tech Topic Series: PCBs and Sustainability.” Dr. Maarten Cauwe of imec spoke on “Life Cycle Inventory (LCI) Models for Assessing and Improving the Environmental Impact of PCB Assemblies,” and Jack Herring of Jiva Materials Ltd. spoke on “Transforming Electronics with Recyclable PCB Technology.” This column will review information and provide analysis from both presentations.
Dymax Renews Connecticut Headquarters Lease, Reinforces Long-Term Commitment to Local Community
08/08/2025 | DymaxDymax, a global manufacturer of rapid light-curing materials and equipment, is pleased to announce the renewal and extension of its corporate lease at its 318 Industrial Lane, Torrington, headquarters.