Topological Insulating Phase Predicted in a New Type of Material
November 23, 2018 | RIKENEstimated reading time: 2 minutes

A class of materials called electrides could harbor exotic topological properties, according to calculations by RIKEN scientists. This prediction promises to broaden the types of materials whose topological properties can be exploited in new devices.
Topology is an area of mathematics that describes an object in terms of those physical properties that remain the same even when the shape of the object changes. It has been an important theoretical concept in quantum and particle physics for decades, but the last few years has seen the emergence of materials that exhibit extraordinary properties due to topology.
Many types of topological materials have been identified, including topological insulators and topological semimetals. In topological insulators, electrons can scud across the material’s surface but cannot travel below the surface. That is because the surface electrons exist in a quantum mechanical state that is geometrically ‘twisted’.
This special topology protects surface states, imparting them with remarkable resilience to impurities and imperfections in the material. This robustness makes topological matter an exciting prospect for a new generation of information processing devices.
To date, the search for new topological materials has largely been limited to matter that includes heavy elements with intrinsic magnetic properties, such as bismuth. This greatly narrows the choice of potentially useful materials. Now, Motoaki Hirayama from the RIKEN Center for Emergent Matter Science and his colleagues have shown that an entirely different class of materials, known as electrides, can also exhibit topological properties.
Like common table salt (sodium chloride), electrides are ionic crystals—ordered arrays of positively charged cations and negatively charged anions. But in electrides, the anions are electrons rather than ions. Some of the electrons prefer to sit between the atomic nuclei in the crystal structure. This means they are less influenced by the nuclei’s electric fields and so are weakly bound to the atomic lattice. Hirayama and co-workers theoretically modeled the behavior of these electrons various electride materials using so-called first-principles calculations.
“For example, we found an exotic topological state in the electride scandium carbide,” says Hirayama. “Thanks to its nontrivial topology and electride properties, its topological charges float on the material’s surface.”
The team found that electrides can support various topological phases, including both topological insulating and topological semimetal phases. And they suggest that these effects could be observed using commonly used experimental techniques, such as scanning tunneling microscopy and angle-resolved photoelectron spectroscopy.
“The next step is to further investigate the physical properties of these topological electrides,” says Hirayama. “We expect them to be a rich source of physics.”
Suggested Items
Symposium Review: Qnity, DuPont, and Insulectro Forge Ahead with Advanced Materials
07/02/2025 | Barb Hockaday, I-Connect007In a dynamic and informative Innovation Symposium hosted live and on Zoom on June 25, 2025, representatives from Qnity (formerly DuPont Electronics), DuPont, and Insulectro discussed the evolving landscape of flexible circuit materials. From strategic corporate changes to cutting-edge polymer films, the session offered deep insight into design challenges, reliability, and next-gen solutions shaping the electronics industry.
Indium Corporation Expert to Present on Automotive and Industrial Solder Bonding Solutions at Global Electronics Association Workshop
06/26/2025 | IndiumIndium Corporation Principal Engineer, Advanced Materials, Andy Mackie, Ph.D., MSc, will deliver a technical presentation on innovative solder bonding solutions for automotive and industrial applications at the Global Electronics A
Gorilla Circuits Elevates PCB Precision with Schmoll’s Optiflex II Alignment System
06/23/2025 | Schmoll MaschinenGorilla Circuits, a leading PCB manufacturer based in Silicon Valley, has enhanced its production capabilities with the addition of Schmoll Maschinen’s Optiflex II Post-Etch Punch system—bringing a new level of precision to multilayer board fabrication.
Day 1: Cutting Edge Insights at the EIPC Summer Conference
06/17/2025 | Pete Starkey, I-Connect007The European Institute for the PCB Community (EIPC) Summer Conference took place this year in Edinburgh, Scotland, June 3-4. This is the second of three articles on the conference. The other two cover the keynote speeches and Day 2 of the technical conference. Below is a recap of the first day’s sessions.
American Made Advocacy: Supporting the Entire PCB Ecosystem—Materials to OEMs
06/17/2025 | Shane Whiteside -- Column: American Made AdvocacyWith the addition of RTX to PCBAA’s membership roster, we now represent the interests of companies in the entire PCB ecosystem. From material providers to OEMs, the insights of our collective members help us educate, advocate, and support legislation and policy favorable to America’s microelectronics manufacturers. The industry veterans who lead these companies provide valuable perspective, and their accumulated wisdom makes us an even stronger association.