Terahertz Laser Pulses Amplify Optical Phonons in Solids
December 4, 2018 | Universität HamburgEstimated reading time: 2 minutes

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at CFEL presents evidence of the amplification of optical phonons in a solid by intense terahertz laser pulses. These light bursts excite atomic vibrations to very large amplitudes, where their response to the driving electric field becomes nonlinear and conventional description fails to predict their behavior. In this new realm, fundamental material properties usually considered constant are modulated in time and act as a source for phonon amplification.
When light excites the material and induces large atomic vibrations at frequency ω (blue wave), fundamental material properties are modulated in time at twice such frequency (red wave), acting a source for phonon amplification.© Jörg Harms / MPSD
The amplification of light dramatically changed science and technology in the 20th century. This path, which began in 1960 with the invention of the laser, still has such a remarkable impact that the 2018 Nobel Prize in Physics was awarded “for groundbreaking inventions in the field of laser physics”. Indeed, the amplification of other fundamental excitations like phonons or magnons is likely to have an equally transformative impact on modern condensed matter physics and technology.
The group led by CUI member Prof. Andrea Cavalleri at the MPSD has pioneered the field of controlling materials by driving atomic vibrations (i.e. phonons) with intense terahertz laser pulses. If the atoms vibrate strongly enough, their displacement affects material properties. This approach has proven successful in controlling magnetism, as well as inducing superconductivity and insulator-to-metal transitions. In this field, it is then important to understand whether the phonon excitation by light can be amplified, potentially leading to performative improvements of the aforementioned material control mechanisms.
In the present work, the scientists used intense terahertz pulses to resonantly drive large-amplitude phonon oscillations in silicon carbide and investigated the dynamic response of this phonon by measuring the reflection of weak (also resonant) probe pulses as a function of time delay after the excitation.
“We discovered that for large enough intensities of our driving pulses, the intensity of the reflected probe light was higher than that impinging on the sample,” said first author Andrea Cartella. “As such, silicon carbide acts as an amplifier for the probe pulses. Because the reflectivity at this frequency is the result of the atomic vibrations, this represents a fingerprint of phonon amplification.”
The scientists were able to rationalize their findings with a theoretical model that allowed them to identify the microscopic mechanism of this phonon amplification: fundamental material properties, usually considered constant, are modulated in time and act as a source for amplification. This is the phononic counterpart of a well-known nonlinear optical effect, the so-called four-wave-mixing.
These findings build upon another discovery by the Hamburg group that was published earlier this year, showing that phonons can have a response reminiscent of the high-order harmonic generation of light. These new discoveries suggest the existence of a broader set of analogies between phonons and photons, paving the way for the realization of phononic devices.
This work was supported by the ERC Synergy Grant “Frontiers in Quantum Materials’ Control” (Q-MAC). The Center for Free-Electron Laser Science (CFEL) is a joint enterprise of DESY, the Max Planck Society and the University of Hamburg. This collaboration involved also Prof. Roberto Merlin of the University of Michigan. Text: MPSD, ed.
Suggested Items
New Database of Materials Accelerates Electronics Innovation
05/02/2025 | ACN NewswireIn a collaboration between Murata Manufacturing Co., Ltd., and the National Institute for Materials Science (NIMS), researchers have built a comprehensive new database of dielectric material properties curated from thousands of scientific papers.
DuPont Announces Additional Leaders and Company Name for the Intended Spin-Off of the Electronics Business
04/29/2025 | PRNewswireDuPont announced Qnity Electronics, Inc. as the name of the planned independent Electronics public company that will be created through the intended spin-off of its Electronics business.
2024 Global Semiconductor Materials Market Posts $67.5 Billion in Revenue
04/29/2025 | SEMIGlobal semiconductor materials market revenue increased 3.8% to $67.5 billion in 2024, SEMI, the global industry association representing the electronics design and manufacturing supply chain, reported in its Materials Market Data Subscription (MMDS).
New RF Materials Offer Options for RF Designers
04/29/2025 | Andy Shaughnessy, Design007 MagazineThe RF materials arena has changed quite a bit in the past decade. The newest thermoset laminates boast performance numbers that are almost competitive with PTFE, but without the manufacturability challenges. At IPC APEX EXPO this year, I spoke with Brent Mayfield, business development manager at AGC Multi Material America. Brent walked through some recent innovations in RF materials, advances in resin systems, and the many design trade-offs for RF engineers to consider for each material set.
Panel Driver IC Price Decline Slows in 1H25; Gold Prices, China Subsidies, and U.S.-China Tariffs Emerge as Key Variables
04/28/2025 | TrendForceTrendForce’s latest investigation finds that China’s subsidy policies and rising concerns over reciprocal tariffs are reshaping brand strategies in the panel market, indirectly influencing price trends for panel driver ICs.