Will Light Be the Basis for Quantum Computing?
December 4, 2018 | INSTITUT NATIONAL DE LA RECHERCHE SCIENTIFIQUE - INRSEstimated reading time: 2 minutes

Using a compact optical platform that exploits the quantum characteristics of light, Professor Roberto Morandotti and his team are one step closer to realizing the first powerful photonic quantum computer. In the journal Nature Physics, the INRS researchers revealed to have generated a particular class of quantum states–d-level cluster states–, as well as to have used them to implement novel quantum operations. The demonstrated states exhibit unique properties that make them more robust and powerful than any other such states demonstrated thus far.
For nearly ten years, Professor Roberto Morandotti has been building an ambitious system piece by piece by developing chips that use light particles (photons) as the data medium. On these coin-sized chip structures, photons are generated and transformed so they can be assigned unique quantum properties. His team was the first to successfully create high-dimensional (i.e. quDit) optical cluster states, one of the elements that can enable the ongoing quest to harness the power of quantum computing.
Electronic computer systems are nearing the limit of their capabilities, yet demand for greater computing power is constantly growing. This is why scientists are turning to quantum computing, investigating how to encode a significant amount of information in light particles and perform calculations of unprecedented complexity.
To get there, the data medium has to be shifted to quantum bits (or qubits), the non-classical computing equivalent of conventional bits. By judiciously designing the quantum state of the photons, it is possible to increase the information storage capacity of qubits and boost them to obtain so-called quDits. Then, by grouping the quDits into clusters, quantum computing operations based on the so called ‘one-way’ scheme become possible.
Other approaches to quantum computing use ions, atoms, or other quantum resources, but the efforts to manipulate them towards a higher-dimensional encoding have been inefficient. According to Professor José Azaña (INRS), an expert of telecommunications who contributed to this research, photons also present another advantage: “They are used to transmit information via optical fibers in existing telecommunications systems. That means photons with controlled quantum properties can also travel through these same channels without losing their attributes.”
The complexity and richness of the cluster states described in the article in Nature Physics is unprecedented. Moreover, the team of researchers also achieved another first by performing high-dimensional quantum computing operations harnessing the realized cluster states.
They demonstrated that light has all the necessary features to power the superfast computers of the future. In a significant leap forward, this was done with a compact system compatible with existing technologies. The platform developed by the INRS team is capable of generating quantum states with complexities sufficient to achieve quantum computing objectives, thus paving the way to one-way quantum computers.
Suggested Items
2025 ASEAN IT Spending Growth Slows to 5.9% as AI-Powered IT Expansion Encounters Post-Boom Normalization
06/26/2025 | IDCAccording to the IDC Worldwide Black Book: Live Edition, IT spending across ASEAN is projected to grow by 5.9% in 2025 — down from a robust 15.0% in 2024.
Rethinking How Operators Interface With the Line
06/11/2025 | Nolan Johnson, SMT007 MagazineJurgen Schmerler, CEO of WaveOn, reveals how AI and large language models are revolutionizing electronics manufacturing. By integrating AI with machinery, operators can access real-time, multimodal information for troubleshooting and maintenance, significantly reducing training time and enhancing efficiency. He discusses the industry's challenges, the customizable knowledge bases, and the future of proactive maintenance and process control.
Standards: The Roadmap for Your Ideal Data Package
05/29/2025 | Andy Shaughnessy, Design007 MagazineIn this interview, IPC design instructor Kris Moyer explains how standards can help you ensure that your data package has all the information your fabricator and assembler need to build your board the way you designed it, allowing them to use their expertise. As Kris says, even with IPC standards, there’s still an art to conveying the right information in your documentation.
Future-proofing Electronics: ChemFORWARD Works Toward Collaboration for Safer Chemistry
05/19/2025 | Rachel Simon, ChemFORWARDThe electronics industry is facing a critical juncture. As consumer demand for sustainable products rises and regulatory pressures intensify, companies must prioritize the safety of their products and processes. This means not only complying with evolving chemical restrictions but also proactively seeking safer alternatives.
CACI’s Mission-Critical Technology will Accelerate the Delivery of Electronic Warfighting Capabilities to the U.S. Navy’s Existing Fleet
05/13/2025 | CACI International Inc.CACI International Inc announced today that it has been awarded additional work by the U.S. Navy to procure enhancements to the current fielded Shipboard Information Warfare Exploit system under its existing contract for Spectral, a next-generation shipboard signals intelligence (SIGINT), electronic warfare (EW), and information operations (IO) weapon system.