NTU Singapore’s 9th Satellite Successfully Deployed in Space
January 25, 2019 | NTUEstimated reading time: 6 minutes
The AOBA VELOX-IV cube satellite was built by a team led by Mr Lim Wee Seng, Executive Director of NTU’s Satellite Research Centre, while its new altitude determination and control algorithm was developed by Prof Cho’s research team at Kyutech in Japan. It has two solar panels which unfold in space to form a solar array of 30cm x 20cm.
Its primary mission is to capture Earth’s horizon during sunrise and sunset, which would pave the way towards eventually capturing the Lunar Horizon Glow, a phenomenon first observed by Apollo astronauts in the 1960s.
Capturing sharp images requires a superior low-light camera, altitude control algorithm and precise reaction wheels which can rotate and orient the satellite accurately at its target.
Its secondary mission is to test an improved quad-jet pulsed plasma thruster that generates ultra-hot plasma gases by burning solid Teflon fuel. It is used to precisely control the satellite’s angular momentum and rotation, which would be required when orbiting the Moon in any future lunar mission.
SPATIUM-I is the result of innovative engineering by a joint team led by NTU Assistant Prof Holden Li from the NTU School of Mechanical and Aerospace Engineering and Prof Cho from Kyutech.
The team’s miniaturised atomic clock provides an accurate timing reference for the nanosatellite’s on-board electronics and has been successfully tested in space, opening up the possibility of synchronised working with future NTU satellites.
This would allow a group of satellites flying in formation to perform joint missions, for example, the real-time three-dimensional mapping of the ionosphere plasma density, which is the ionized component of the Earth’s upper atmosphere consisting of free electrons that can interfere with electromagnetic waves and radio frequency, and in providing weather forecasting.
SPATIUM-1 will also be testing out several Micro Electro Mechanical Systems (MEMS) technologies, which are miniaturised versions of the various mechanical systems used by larger satellites. One such application of MEMS will be in space-based Internet of Things (Space IoTs).
Currently, land-based Internet of Things (IoTs) are leading the Fourth Industrial Revolution in manufacturing, using sensor data to optimise manufacturing plants, while Smart City applications include monitoring and optimisation of urban traffic and city services.
However, land-based IoTs require infrastructure investment and have a limited range, especially where it does not make economic sense to install wireless transmission devices in smaller, remote towns and villages.
“With the latest NTU-Kyutech timing platform, we may be able to scale up the technology for Space IoTs, which would revolutionise the sensor network in infrastructure-poor regions of the world, to track valuable assets such as vehicles, ships and even livestock,” added Prof Li, principal investigator of the satellite and a scientist at the Temasek Labs @ NTU. “With close to half of the world’s population without access to the Internet, low-cost Space IoTs could be a feasible alternative for providing tracking and monitoring services.”
20 Years of Satellite Expertise
NTU’s first foray into space began 20 years ago. The first project was a communication payload codenamed Merlion, while the main satellite body was developed by the University of Surrey, UK. It was launched in 1999, making this year the 20th year anniversary milestone since NTU begun its space mission.
NTU has since designed, built and sent nine satellites into Earth’s orbit. The X-SAT, NTU’s microsatellite built in collaboration with the DSO National Laboratories, is Singapore’s first locally-built satellite which was launched into space in 2011.
Since 2009, NTU has been running Singapore’s first satellite programme for undergraduates and postgraduates.
Suggested Items
I-Connect007 Editor’s Choice: Five Must-Reads for the Week
06/27/2025 | Nolan Johnson, I-Connect007While news outside our industry keeps our attention occupied, the big news inside the industry is the rechristening of IPC as the Global Electronics Association. My must-reads begins with Marcy LaRont’s exclusive and informative interview with Dr. John Mitchell, president and CEO of the Global Electronics Association. For designers, have we finally reached the point in time where autorouters will fulfill their potential?
Knocking Down the Bone Pile: Tin Whisker Mitigation in Aerospace Applications, Part 3
06/25/2025 | Nash Bell -- Column: Knocking Down the Bone PileTin whiskers are slender, hair-like metallic growths that can develop on the surface of tin-plated electronic components. Typically measuring a few micrometers in diameter and growing several millimeters in length, they form through an electrochemical process influenced by environmental factors such as temperature variations, mechanical or compressive stress, and the aging of solder alloys.
RTX, the Singapore Economic Development Board Sign MOU Outlining 10-year Growth Roadmap
06/20/2025 | RTXRTX and the Singapore Economic Development Board (EDB) have signed a Memorandum of Understanding (MoU) which outlines a 10-year roadmap to further long-term strategic collaboration in Singapore.
Indra Signs Agreement with AXISCADES to Boost Production of Cutting-Edge Systems in India
06/18/2025 | PRNewswireParis Air Show -- Indra and the Indian technology company AXISCADES have signed an agreement to collaborate on the production of solutions for the aerospace and defense markets.
GKN Aerospace Delivers First High Voltage EWIS System for Clean Aviation’s SWITCH Project
06/16/2025 | GKN AerospaceGKN Aerospace has completed and delivered the first high voltage Electrical Wiring Interconnection System (EWIS) for the Clean Aviation SWITCH project.