Polymer Power Potential
February 5, 2019 | A*STAREstimated reading time: 2 minutes

The mantra ‘reduce, reuse, recycle’ is increasingly pertinent. Every year, vast amounts of energy that could be captured and reused is lost through waste heat. Now, A*STAR scientists have demonstrated, through theoretical calculations, that it may be possible to fabricate thermoelectric organic polymers that can convert heat into electrical energy with high efficiency.
Thermoelectric (TE) materials work by responding to temperature differences, inducing electric charge carriers to flow from the hot to the cold side of the material. TE materials are already used for powering refrigeration, and for limited power generation. An effective TE material needs to have high electrical conductivity, low thermal conductivity, and a high ‘Seebeck coefficient’—the voltage generated per degree of temperature difference across the material. However, it is rare for any one material to satisfy all of these conditions, meaning that existing TE materials are limited in efficiency.
“One way of improving TE performance is to use doping, adding certain chemicals to the material to enhance its electrical conductivity by increasing charge carrier concentrations,” says Shuo-Wang Yang, at A*STAR’s Institute of High Performance Computing, who led the team. “However, doping can also interfere with the materials’ stability and performance, and finding a dopant that works effectively is challenging. Identifying TE materials that work without doping could transform energy harvesting.”
The team focused their attention on linear-backbone coordination polymers, structures containing metal ions linked by ligands, which can be built in the laboratory to specific designs. These polymers exhibit numerous advantages over conventional inorganic TE materials; they are flexible, have low thermal conductivity and are compatible with biological organisms. However, they have low electrical conductivity—a challenge that Yang and co-workers tried to overcome in their theoretical search.
“Based on first-principle molecular dynamics and structure optimization, we identified a polymer called poly(nickel-ethylenetetrathiolate) and three associated analogs which demonstrate intrinsically metallic behaviors and high electrical conductivity,” says Yang. “This is exciting as it suggests these polymers are potential dopant-free TE materials.”
The team’s analyses suggest that this metallic behavior stems from the formation of dense, non-bonding molecular interactions between sulfur or selenium atoms within the polymeric structures. These interactions strengthen the forces between the atoms, decreasing electronic band gaps and encouraging the flow of electrical charge.
“Xu Jianwei, Kedar Hippalgaonkar, and their teams at the A*STAR Institute of Materials Research and Engineering are now synthesizing these polymers,” says Yang. “These materials are very promising, particularly in the applications of waste heat recovery and refrigeration near ambient temperature.”
Suggested Items
J.A.M.E.S. Explores the Future of Additive Manufactured Electronics
02/18/2025 | Marcy LaRont, I-Connect007Andreas Salomon is chief scientist at J.A.M.E.S, a joint venture of Nano Dimension and HENSOLD. In this interview he discusses the evolving landscape of additively manufactured electronics, highlighting the integration of cutting-edge technologies, such as micro-dispensing and ink jetting. These technologies enhance capabilities in signal integrity and miniaturization. He also talks about the importance of sustainability, the need for standardized testing, and collaboration among industry leaders that will drive innovation and transform the future of electronics manufacturing through IPC’s standards development.
Sunny Kwok Joins Ventec as Technical Sales Representative for UK and EMEA
02/14/2025 | VentecVentec is pleased to announce the appointment of Sunny Kwok as Technical Sales Representative for UK and EMEA regions. Sunny will further enhance service support levels for Ventec full range of materials including non-reinforced resin coated copper and film products (thermal/Pro-bond), high speed/low loss (tec-speed) and Ventec’s full range of halogen free materials for high reliability applications.
Unveiling the Future: Insights on Next-Gen Megtron Materials
02/13/2025 | Marcy LaRont, I-Connect007In this interview from DesignCon, Jim Kenny, OEM business development manager at Panasonic, touches on next-generation Megtron materials and delves into the industry's growing demand for high-speed, low-loss laminate systems, particularly in light of the anticipated 224 gigabits per second technology. With a focus on material development and production timelines, Jim highlights the challenges and opportunities in meeting customer needs while also maintaining quality and supply chain stability. As Panasonic prepares for the evolving landscape, they remain committed to innovating in this competitive market.
DuPont to Discuss Development of EUV Photoresists at SPIE Advanced Lithography + Patterning Conference
02/13/2025 | DuPontDuPont today announced its participation in the 2025 SPIE Advanced Lithography + Patterning conference, taking place Feb. 24–28 in San Jose, California. DuPont will showcase its latest innovations through technical presentations focused on the development of photoresists for extreme ultraviolet (EUV) lithography and advancing sustainability in the design of lithographic materials.
IPC Hall of Fame Spotlight Series: Highlighting Doug Pauls
02/12/2025 | Dan Feinberg, Technology Editor, I-Connect007Over the years, IPC members who have contributed significantly to IPC and our industry have been awarded the IPC Raymond E. Pritchard Hall of Fame (HOF) Award. Though many early HOF members have passed away and are unknown to today’s IPC membership, their contributions still resonate. This special series on IPC Hall of Fame members provides a reminder of who was honored and why. As a bonus, for those who are still around, we get to find out what these talented individuals are up to today.