'Immunizing' Quantum Bits so That They Can Grow Up
February 27, 2019 | Purdue UniversityEstimated reading time: 2 minutes

Quantum computers will process significantly more information at once compared to today's computers. But the building blocks that contain this information—quantum bits, or "qubits"—are way too sensitive to their surroundings to work well enough right now to build a practical quantum computer.
Long story short, qubits need a better immune system before they can grow up.
A new material, engineered by Purdue University researchers into a thin strip is one step closer to "immunizing" qubits against noise, such as heat and other parts of a computer, that interferes with how well they hold information. The work appears in Physical Review Letters.
The thin strip, called a "nanoribbon," is a version of a material that conducts electrical current on its surface but not on the inside—called a "topological insulator"—with two superconductor electrical leads to form a device called a "Josephson junction."
In a quantum computer, a qubit "entangles" with other qubits. This means that reading the quantum information from one qubit automatically affects the result from another, no matter how far apart they are.
Without entanglement, the speedy calculations that set apart quantum computing can't happen. But entanglement and the quantum nature of the qubits are also sensitive to noise, so they need extra protection.
A topological-insulator nanoribbon Josephson junction device is one of many options researchers have been investigating for building more resilient qubits. This resilience could come from special properties created by conducting a supercurrent on the surface of a topological insulator, where an electron's spin is locked to momentum.
The problem so far is that a supercurrent tends to leak into the inside of topological insulators, preventing it from flowing completely on the surface.
To get more resilient, topological qubits need supercurrents to flow through the surface channels of topological insulators.
"We have developed a material that is really clean, in the sense that there are no conducting states in the bulk of the topological insulator," said Yong Chen, a Purdue professor of physics and astronomy and of electrical and computer engineering, and the director of the Purdue Quantum Science and Engineering Institute. "Superconductivity on the surface is the first step for building these topological quantum computing devices based on topological insulators."
Morteza Kayyalha, a former Ph.D. student in Chen's lab, could show that the supercurrent wraps all the way around the new topological insulator nanoribbon at temperatures 20% lower than the "critical temperature," when the junction becomes superconducting. The experiment was conducted in collaboration with the lab of Leonid Rokhinson, a Purdue professor of physics and astronomy.
"It's known that as the temperature lowers, the superconductivity is enhanced," Chen said. "The fact that much more supercurrent flowed at even lower temperatures for our device was evidence that it is flowing around these protective surfaces."
This work was supported by multiple awards from the National Science Foundation, U.S. Department of Energy, U.S. Department of Defense Office of Naval Research and the Simons Foundation.
Suggested Items
Intervala Hosts Employee Car and Motorcycle Show, Benefit Nonprofits
08/27/2024 | IntervalaIntervala hosted an employee car and motorcycle show, aptly named the Vala-Cruise and it was a roaring success! Employees had the chance to show off their prized wheels, and it was incredible to see the variety and passion on display.
KIC Honored with IPC Recognition for 25 Years of Membership and Contributions to Electronics Manufacturing Industry
06/24/2024 | KICKIC, a renowned pioneer in thermal process and temperature measurement solutions for electronics manufacturing, is proud to announce that it has been recognized by IPC for 25 years of membership and significant contributions to electronics manufacturing.
Boeing Starliner Spacecraft Completes Successful Crewed Docking with International Space Station
06/07/2024 | BoeingNASA astronauts Barry "Butch" Wilmore and Sunita "Suni" Williams successfully docked Boeing's Starliner spacecraft to the International Space Station (ISS), about 26 hours after launching from Cape Canaveral Space Force Station.
KIC’s Miles Moreau to Present Profiling Basics and Best Practices at SMTA Wisconsin Chapter PCBA Profile Workshop
01/25/2024 | KICKIC, a renowned pioneer in thermal process and temperature measurement solutions for electronics manufacturing, announces that Miles Moreau, General Manager, will be a featured speaker at the SMTA Wisconsin Chapter In-Person PCBA Profile Workshop.
The Drive Toward UHDI and Substrates
09/20/2023 | I-Connect007 Editorial TeamPanasonic’s Darren Hitchcock spoke with the I-Connect007 Editorial Team on the complexities of moving toward ultra HDI manufacturing. As we learn in this conversation, the number of shifting constraints relative to traditional PCB fabrication is quite large and can sometimes conflict with each other.