First Portable Prototype of Photonic Pressure Sensor
February 27, 2019 | NISTEstimated reading time: 5 minutes
In collaboration with industry, researchers from the National Institute of Standards and Technology (NIST) have made the first portable prototype of the Fixed-Length Optical Cavity (FLOC), a device that uses light to measure pressure with higher accuracy and precision than most commercial pressure sensors.
This newest version is a milestone on the journey toward the creation of a device that could revolutionize the way pressure is measured with potential uses by many industries, particularly semiconductor chip and aircraft manufacturing.
In 2017, NIST and MKS Instruments, Inc. of Andover, Massachusetts, signed a Cooperative Research and Development Agreement (CRADA) to take a laboratory-scale version of the FLOC and create a smaller, more robust prototype that more closely resembles a commercial product. Thanks to the CRADA work, the joint NIST and MKS team has now successfully demonstrated a prototype version small enough to fit into two suitcases, Hendricks said.
“MKS Instruments brings over 50 years of pressure measurement, optical and laser experience to this project, and we are honored to have been selected by NIST to work with them on this important and prestigious development,” said Phil Sullivan, CTO of MKS’s Pressure and Vacuum Measurement Solutions business. “We anticipate that this work will lead to a new wide-range, compact pressure measurement standard.”
Robust, portable FLOC sensors could potentially reduce the cost of producing semiconductor chips such as those used in smartphones, as well as decreasing the cost of air travel. This is because both the chip manufacturing and aerospace industries rely on pressure measurements.
Semiconductor manufacturers must accurately control the pressures of gases fed into a facility’s fabrication units during the making of a chip. Conventional pressure sensors are precise, but their readings tend to drift over time, meaning they have to be taken out of service regularly to be calibrated. Since the FLOC’s pressure measurements are absolute, no calibration is required. So, FLOCs could be used to check the drift of conventional pressure sensors on the factory floor in real time, reducing the need for downtime.
Conventional pressure sensors are also used in aircraft to measure the plane’s altitude in-flight. A more precise pressure sensor could allow flight controllers to safely arrange planes more densely, saving fuel and potentially lowering the cost to air travelers.
Although it is beyond the scope of the current CRADA project, NIST scientists envision that one day the FLOC could be reduced even further in size, to a chip-scale instrument.
“The dream from the start of this project was: Could you get this whole thing shrunk down to the size where it could show up in everyday devices like your smartwatch or phone?” said NIST physicist Jay Hendricks. Better pressure sensors in cell phones could give first responders crucial information about whether a victim in a high-rise is on the tenth or eleventh floor. “That’s science fiction right now, but it’s where the technology could go,” Hendricks said.
New Anatomy
The FLOC measures pressure by measuring subtle differences in the frequency of light passing through two physical channels called optical cavities: a reference channel in vacuum and a test channel filled with a gas whose pressure is being measured.
To measure pressure, the FLOC detects subtle differences in light passing through two channels, one flooded with gas and the other in vacuum. At either end of each channel is a semi-reflective mirror. Laser light enters the channels through one side and reflects back and forth between the mirrors, forming standing waves. Some of this light exits the channels through the other side. The presence of gas in the top channel causes the wavelength to shorten. When the light from the two channels is combined, it creates a wave pattern, a signal that can be used to calculate the gas's pressure in real time.
NIST first made a laboratory-grade version of the FLOC in 2014. It was designed to be sensitive and accurate enough to become a primary calibration standard, an instrument used to calibrate all other pressure measurement devices.
Page 1 of 2
Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
Honeywell-Led Consortium Receives UK Government Funding to Revolutionize Aerospace Manufacturing
09/02/2025 | HoneywellA consortium led by Honeywell has received UK Government funding for a project that aims to revolutionize how critical aerospace technologies are manufactured in the UK through the use of AI and additive manufacturing.
Coherent Announces Agreement to Sell Aerospace and Defense Business to Advent for $400 Million
08/15/2025 | AdventCoherent Corp., a global leader in photonics, today announced that it has entered into a definitive agreement to sell its Aerospace and Defense business to Advent, a leading global private equity investor, for $400 million. Proceeds will be used to reduce debt, which will be immediately accretive to Coherent’s EPS.
KYZEN Partners with LPW to Elevate High Purity Cleaning with Cutting-Edge Cyclic Nucleation Technology in North America
08/13/2025 | KYZEN'KYZEN, a global leader in advanced cleaning solutions, has reached a major milestone in high-purity cleaning with the addition of a state-of-the-art Vacuum Cyclic Nucleation System at its North American Application Lab.
Jeh Aerospace Raises $11M to Boost Aircraft Supply Chain
08/12/2025 | I-Connect007 Editorial TeamJeh Aerospace, the high-precision aerospace and defense manufacturing startup founded by Vishal Sanghavi and Venkatesh Mudragalla, has raised $11 million in a Series A round led by Elevation Capital, with support from General Catalyst, to scale its commercial aircraft supply chain manufacturing in India, according to OEM.
New Frontier Aerospace and Air Force Institute of Technology Sign CRADA to Advance Hypersonic VTOL Aircraft
08/05/2025 | PR NewswireNew Frontier Aerospace (NFA) is excited to announce a Collaborative Research and Development Agreement (CRADA) with the Air Force Institute of Technology (AFIT) aimed at advancing an innovative rocket-powered hypersonic Vertical Takeoff and Landing (VTOL) aircraft.