Scientists Measure Exact Edge Between Superconducting and Magnetic States
February 28, 2019 | Ames LaboratoryEstimated reading time: 2 minutes

Scientists at the U.S. Department of Energy’s Ames Laboratory have developed a method to accurately measure the “exact edge” or onset at which a magnetic field enters a superconducting material. The knowledge of this threshold— called the lower critical field— plays a crucial role in untangling the difficulties that have prevented the broader use of superconductivity in new technologies.
In condensed matter physics, scientists distinguish between various superconducting states. When placed in a magnetic field, the upper critical field is the strength at which it completely destroys superconducting behavior in a material. The Meissner effect can be thought of as its opposite, which happens when a material transitions into a superconducting state, completely expelling a magnetic field from its interior, so that it is reduced to zero at a small (typically less than a micrometer) characteristic length called the London penetration depth.
But what happens in the gray area between the two? Practically all superconductors are classified as type II, meaning that at larger magnetic fields, they do not show a complete Meissner effect. Instead, they develop a mixed state, with quantized magnetic vortices—called Abrikosov vortices— threading the material, forming a two-dimensional vortex lattice, and significantly affecting the behavior of superconductors. Most importantly, these vortices can be pushed around by flowing electrical current, causing superconductivity to dissipate.
The point when these vortices first begin to penetrate a superconductor is called the lower critical field, one that’s been notoriously difficult to measure due to a distortion of the magnetic field near sample edges. However, knowledge of this field is needed for better understanding and controlling superconductors for use in applications.
“The boundary line, the temperature-dependent value of the magnetic field at which this happens, is very important; the presence of Abrikosov vortices changes the behavior of the superconductor a great deal,” said Ruslan Prozorov, an Ames Laboratory physicist who is an expert in superconductivity and magnetism. “Many of the applications for which we’d like to use superconductivity, like the transmission of electricity, are hindered by the existence of this vortex phase.”
To validate the novel technique developed to measure this boundary line, Prozorov and his team probed three already well-studied superconducting materials. They used a recently developed optical magnetometer that takes advantage of the quantum state of a particular kind of an atomic defect, called nitrogen-vacancy (NV) centers, in diamond. The highly sensitive instrument allowed the scientists to measure very small deviations in the magnetic signal very close to the sample edge detecting the onset of vortices penetration.
“Our method is non-invasive, very precise and has better spatial resolution than previously used methods,” said Prozorov.
In addition, theoretical calculations conducted together with another Ames Laboratory scientist, Vladimir Kogan, allowed extraction of the lower critical field values from the measured onset of vortex penetration.
The work was supported by DOE’s Office of Science.
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
Advint Incorporated Brings Artificial Intelligence to Electroplating Training
09/11/2025 | Advint IncorporatedAdvint Incorporated is introducing a new dimension to its electroplating training programs: the integration of Artificial Intelligence (AI). This initiative reflects the company’s commitment to providing PCB fabricators and manufacturers in the USA and Canada with training that is practical, forward-looking, and directly relevant to today’s production challenges.
Elementary Mr. Watson: Running the Signal Gauntlet
09/11/2025 | John Watson -- Column: Elementary, Mr. WatsonIf you’ve ever run a military obstacle course, you know it’s less “fun fitness challenge” and more “how can we inflict as much pain in the shortest time possible?” You start fresh—chest out, lungs full of confidence, thinking you might even look good doing this—and 10 seconds later, you’re questioning all your life choices.
It's Only Common Sense: The Evolution of Prospecting
09/08/2025 | Dan Beaulieu -- Column: It's Only Common SenseCold calling isn’t dead. I don’t care what the LinkedIn gurus or the TikTok “sales coaches” say. Picking up the phone and talking to another human being is still one of the fastest ways to grow your business. But (and it’s a big but), cold calling is different now. The world and buyers have changed. You can’t smile-and-dial like it’s 1987, reading the same tired script, hoping the gatekeeper is too bored to block you. If you’re still cold calling the old way—no research, relationship, or relevance—you’re showing up to a gunfight with a butter knife.
Elementary Mr. Watson: Routing Hunger Games—May the Traces Be Ever in Your Favor
08/26/2025 | John Watson -- Column: Elementary, Mr. WatsonI’d like to share a harsh truth, and I say this as a friend: PCB designers are often their own worst enemy. It’s rarely the complexity of the circuit, the last-minute changes from mechanical, the limited enclosure space, or the ever-expanding list of design rules that send projects to the dust heap of failed boards. More often, it's our own decisions, made too quickly and narrowly, and with too little foresight, that sabotage an otherwise good design.
It’s Only Common Sense: 20 Lessons in 20 Years—A Career in Common Sense
08/25/2025 | Dan Beaulieu -- Column: It's Only Common SenseIt’s been 20 years and 1,000 columns since I published my first monthly edition called “It’s Only Common Sense” on Sept. 5, 2005. I had only written 10 columns when I realized I couldn’t be confined to once a month. I simply had too much to say. So, on July 31, 2006, I started writing once a week, and let me tell you, that’s a lot of Mondays spent thinking, listening, watching, and writing about this wild, brutal, and beautiful industry we call the printed circuit board business.