Mini Cheetah Is the First Four-Legged Robot to Do a Backflip
March 4, 2019 | MITEstimated reading time: 6 minutes
The engineers ran the mini cheetah through a number of maneuvers, first testing its running ability through the hallways of MIT’s Pappalardo Lab and along the slightly uneven ground of Killian Court.
In both environments, the quadruped bound along at about 5 miles per hour. The robot’s joints are capable of spinning three times faster, with twice the amount of torque, and Katz estimates the robot could run about twice as fast with a little tuning.
The team wrote another computer code to direct the robot to stretch and twist in various, yoga-like configurations, showcasting its range of motion and ability to rotate its limbs and joints while maintaining balance. They also programmed the robot to recover from an unexpected force, such as a kick to the side. When the researchers kicked the robot to the ground, it automatically shut down.
“It assumes something terrible has gone wrong, so it just turns off, and all the legs fly wherever they go,” Katz says.
When it receives a signal to restart, the robot first determines its orientation, then performs a preprogrammed crouch or elbow-swing maneuver to right itself on all fours.
Katz and co-author Jared Di Carlo, an undergraduate in the Department of Electrical Engineering and Computer Science (EECS), wondered whether the robot could take on even higher-impact maneuvers. Inspired by a class they took last year, taught by EECS Professor Russ Tedrake, they set about programming the mini cheetah to perform a backflip.
“We thought it would be a good test of robot performance, because it takes a lot of power, torque, and there are huge impacts at the end of a flip,” Katz says.
The team wrote a “giant, nonlinear, offline trajectory optimizations” that incorporated the robot’s dynamics and actuator capabilities, and specified a trajectory in which the robot would start out in a certain, right-side-up orientation, and end up flipped 360 degrees. The program they developed then solved all the torques that needed to be applied to each joint, from each individual motor, and at every time period between start and end, in order to carry out the backflip.
“The first time we tried it, it miraculously worked,” Katz says.
“This is super exciting,” Kim adds. “Imagine Cheetah 3 doing a backflip — it would crash and probably destroy the treadmill. We could do this with the mini cheetah on a desktop.”
The team is building about 10 more mini cheetahs, each of which they plan to loan out to collaborating groups, and Kim intends to form a mini cheetah research consortium of engineers, who can invent, swap, and even compete with new ideas.
Meanwhile, the MIT team is developing another, even higher-impact maneuver.
“We’re working now on a landing controller, the idea being that I want to be able to pick up the robot and toss it, and just have it land on its feet,” Katz says. “Say you wanted to throw the robot into the window of a building and have it go explore inside the building. You could do that.”
Page 2 of 2Testimonial
"We’re proud to call I-Connect007 a trusted partner. Their innovative approach and industry insight made our podcast collaboration a success by connecting us with the right audience and delivering real results."
Julia McCaffrey - NCAB GroupSuggested Items
Weaning the U.S. Military Off a Tablet Supply Chain That Leads to China
09/08/2025 | Jim Will, USPAETablet computers are essential to how our military fights, moves and sustains, but these devices are built on a fragile global supply chain with strong ties to China. Building domestic manufacturing to eliminate this vulnerability is feasible if we tap into the information and capabilities that already exist and create strong demand for tablets produced by trusted and assured sources.
Fresh PCB Concepts: Designing for Success at the Rigid-flex Transition Area
08/28/2025 | Team NCAB -- Column: Fresh PCB ConceptsRigid-flex PCBs come in all shapes and sizes. Manufacturers typically use fire-retardant, grade 4 (FR-4) materials in the rigid section and flexible polyimide materials in the flex region. Because of the small size, some rigid-flex PCBs, like those for hearing aid devices, are among the most challenging to manufacture. However, regardless of its size, we should not neglect the transition area between the rigid and flexible material.
Semiconductors Get Magnetic Boost with New Method from UCLA Researchers
07/31/2025 | UCLA NewsroomA new method for combining magnetic elements with semiconductors — which are vital materials for computers and other electronic devices — was unveiled by a research team led by the California NanoSystems Institute at UCLA.
Japan’s OHISAMA Project Aims to Beam Solar Power from Space This Year
07/14/2025 | I-Connect007 Editorial TeamJapan could be on the cusp of making history with its OHISAMA project in its quest to become the first country to transmit solar power from space to Earth, The Volt reported.
The Big Picture: Our Big ‘Why’ in the Age of AI
06/25/2025 | Mehul Davé -- Column: The Big PictureWith advanced technology, Tesla, Google, Microsoft, and OpenAI can quickly transform life as we know it. Several notable artificial intelligence (AI) studies, including the 2024 McKinsey Global Survey on AI, have offered insights into AI’s adoption, impact, and trajectory. The McKinsey study revealed that AI adoption continues to grow, with 50% of respondents reporting using AI in at least one business area.