UW Cell Isolation Research Yields Promising Results
March 5, 2019 | University of WyomingEstimated reading time: 2 minutes

John Oakey’s work at the cellular and molecular level could radically change the way cancer is treated.
Oakey, an associate professor of chemical engineering at the University of Wyoming’s College of Engineering and Applied Science, and his research group have developed an innovative method to isolate cells that are markers of cancer from blood samples.
The cells, known as circulating tumor cells (CTC), are present in the blood of people with tumors in their bodies. The CTCs often migrate from the original tumor site and end up in other areas of the body, potentially growing in the liver, the brain or the lymph nodes. The spread of these cells and the creation of secondary tumors is the process of metastasis, and the treatment of the affected area ends up damaging all cells, including healthy ones.
That makes isolating the CTCs an important but extremely difficult task. A sample of 1 milliliter of blood contains billions of cells, which could contain between one and several hundred CTCs. Current research tactics can isolate the cells, but they typically are mixed with other blood cells.
“We are interested in developing a CTC measurement tool,” Oakey says. “It’s based on microscale processing of blood. This is the proverbial ‘needle in a haystack’ problem. How do you find and isolate those CTCs?”
Oakey adds that, currently, cancer treatment can be likened to a “shotgun blast of medicine” to the affected area, which kills off healthy cells and cancer cells alike, and results in discomfort to patients.
Many research applications require that the cells come back alive and viable for lab cultures. Using Oakey’s microfluidic device, blood is pumped in from one side into chambers and circulates throughout. As they tumble along the surface, certain cells stick to the microfluidic surface and stick if they display markers of cancer.
Once the CTCs are trapped, they can be cultured and tested on an individual basis. The device also can be used to “count” the CTCs. For a person diagnosed and treated, CTC counts can indicate if treatment is working. The research also can be used diagnostically, to see what variant a tumor may have, so therapy can be individualized.
The project was funded by the National Institutes for Health IDeA Networks for Biomedical Research Excellence (INBRE) Program over three previous years.
“We’ve solved the problem of getting the cells back alive,” Oakey says. “We’ve done it by creating the hydrogel capture surfaces. When you shine light upon it, it degrades. The CTCs stick to the gel, along with some healthy cells. We can pick off the CTCs and flush them out of the device, and end up with live cells to culture. They are at 100 percent purity.”
Oakey says the next step is to move the research into a clinical setting. Once the CTCs can be grown in a lab, they can be treated with the latest chemotherapy methods to see how they react. The cells can be genomically tested to determine drug resistance, and researchers can use the method to learn about latent and aggressive cell types in an effort to determine how quickly and aggressively they need to be treated.
“The goal is to see how different kinds of cells respond to therapeutics,” Oakey says. “This research could guide cancer treatments toward individualized treatment strategies. Individualized therapy is very much the goal here.”
Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
PC Graphics Add-in Board Shipments Up 27% QoQ in 2Q25
09/03/2025 | Jon Peddie ResearchAccording to a new research report from the analyst firm Jon Peddie Research, the growth of the global PC-based graphics add-in board market reached 11.6 million units in Q2'25 and desktop PC CPUs shipments increased to 21.7 million units.
PC GPU Shipments Up 8.4% in 2Q25 on Pre-Tariff Demand
09/02/2025 | Jon Peddie ResearchJon Peddie Research reports the growth of the global PC-based graphics processor unit (GPU) market reached 74.7 million units in Q2'25, and PC CPU shipments increased to 66.9 million units.
20 Years of Center Nanoelectronic Technologies (CNT) – Backbone of German Semiconductor Research Celebrates Anniversary
08/14/2025 | Fraunhofer IPMSThe Center Nanoelectronic Technologies (CNT) of the Fraunhofer Institute for Photonic Microsystems (IPMS) is celebrating its 20th anniversary this year. Since its founding in 2005, it has developed into a pillar of applied semiconductor research in Germany and Europe. With its unique research cleanroom and equipment adhering to the 300-mm wafer industry standard, CNT is unparalleled in Germany and serves as a central innovation driver for the microelectronics industry.
Q2 Client CPU Shipments Increased 8% from Last Quarter, Up 13% YoY
08/13/2025 | Jon Peddie ResearchJon Peddie Research reports that the global client CPU market expanded for two quarters in a row, and in Q2’25, it showed unseasonal growth of 7.9% from last quarter, while server CPU shipments increased 22% year over year.
FuriosaAI Closes $125M Investment Round to Scale Production of Next-Gen AI Inference Chip
07/31/2025 | BUSINESS WIREFuriosaAI, a semiconductor company building a new foundation for AI compute, today announced it has completed a $125 million Series C bridge funding round. The investment continues a period of significant momentum for Furiosa as global demand for high-performance, efficient AI infrastructure soars.