Super Sensitive Sensor 'Tastes' and 'Sniffs'
March 14, 2019 | Technion-Israel Institute of TechnologyEstimated reading time: 3 minutes
Researchers from the Technion-Israel Institute of Technology in Haifa have developed an innovative sensing system capable of identifying and distinguishing different stimuli. The system is based on origami (the art of paper folding) combined with ink developed at the Technion.
The Israeli researchers have developed an innovative sensing system capable of identifying and distinguishing different stimuli. The research, just published in the journal Nature Communications, was led by Professor Hossam Haick of the Technion’s Wolfson Faculty of Chemical Engineering and the Russell Berrie Nanotechnology Institute, and Dr. Min Zhang, who did his post-doctoral fellowship with him. Dr. Zhang is currently an associate professor at East China Normal University.
“Today, there is significant demand for multi-purpose sensing systems for specific purposes,” said Prof. Haick. “These systems have great potential as applications in medicine, counterterrorism, food safety, environmental monitoring, ‘The Internet of things’ and more. The problem is that existing technologies, such as gas chromatography, have many disadvantages, including high cost.”
The challenge facing the researchers was to develop a single system sensitive enough to identify and distinguish among different stimuli. They say they developed a solution inspired by nature. “When we think about the human sensory system, we think of a whole that brings all the data to the brain in a format that it understands. That inspired our development, which is meant to concentrate in a different place all the environmental data we want to monitor. It is a multi-purpose sensory system that absorbs the stimuli and distinguishes among them.”
The system developed by Prof. Haick and Dr. Zhang, called “origami hierarchical sensor array” (OHSA), is an integrated array of grouped sensors written on the target object in conductive ink that the two scientists developed. It is a single device that demonstrates sensing abilities and detecting physical and chemical stimuli—temperature, humidity, light and volatile organic particles—at high resolution of time and space. Since it also distinguishes between isomers and chiral enantiomers (forms that are mirror images of each other), it paves new avenues for medical diagnosis. It is worth noting that volatile particle monitoring can be useful in a variety of areas including the diagnosis of disease and monitoring of dangerous substances.
There are many advantages to this unique ink – its low price, the ability to produce it in large quantities and the simplicity of its application on the target surfaces. The researchers conducted experiments that included control groups (other types of ink) and showed that the special ink attaches itself tightly to materials such as aluminum foil; glass; photo paper; Kapton tape (a polyimide film developed by DuPont in the late 1960s that remains stable across a wide range of temperatures and is used in, among other things, flexible printed circuits and thermal blankets used on spacecraft, satellites, and various space instruments; nitrile (the material used to make disposable gloves); and polydimethylsiloxane (PDMS, used to make contact lenses and for medical technologies and cosmetics).
The ink also allows writing on human skin and nails in a kind of conductive tattoo, waterproof—which may allow, for example, constant monitoring of relevant physiological variables. In addition, it can also be used on human skin and fingernails as a kind of water-resistant, conductive tattoo—which can make possible, for example, constant monitoring of relevant physiological variables.
“We can say that our system identifies the ‘fingerprints’ of chemical and physical stimuli and supplies information about them,” said Prof. Haick. Its low cost will make possible its application in many places, including poor areas, for medical and other uses.”
Optical Microscope images of composite made of melanin-analogous polydopamine and graphene, coating (a) paper; and (b) flexible substrate made of Kapton
Suggested Items
Accenture Acquires SYSTEMA to Drive Manufacturing Automation for Semiconductor Clients
07/02/2025 | AccentureAccenture has acquired SYSTEMA, a provider of software solutions and consulting services for manufacturing automation, headquartered in Dresden, Germany.
Driving Innovation: Direct Imaging vs. Conventional Exposure
07/01/2025 | Simon Khesin -- Column: Driving InnovationMy first camera used Kodak film. I even experimented with developing photos in the bathroom, though I usually dropped the film off at a Kodak center and received the prints two weeks later, only to discover that some images were out of focus or poorly framed. Today, every smartphone contains a high-quality camera capable of producing stunning images instantly.
Specially Developed for Laser Plastic Welding from LPKF
06/25/2025 | LPKFLPKF introduces TherMoPro, a thermographic analysis system specifically developed for laser plastic welding that transforms thermal data into concrete actionable insights. Through automated capture, evaluation, and interpretation of surface temperature patterns immediately after welding, the system provides unprecedented process transparency that correlates with product joining quality and long-term product stability.
United Electronics Corporation Advances Manufacturing Capabilities with Schmoll MDI-ST Imaging Equipment
06/24/2025 | United Electronics CorporationUnited Electronics Corporation has successfully installed the advanced Schmoll MDI-ST (XL) imaging equipment at their advanced printed circuit board facility. This significant technology investment represents a continued commitment to delivering superior products and maintaining their position as an industry leader in precision PCB manufacturing.
IBM, RIKEN Unveil First IBM Quantum System Two Outside of the U.S.
06/24/2025 | IBMIBM and RIKEN, a national research laboratory in Japan, today unveiled the first IBM Quantum System Two ever to be deployed outside of the United States and beyond an IBM Quantum Data Center.