Transparent and Self-Healing Electronic Skin
March 18, 2019 | NUSEstimated reading time: 3 minutes

NUS scientists have taken inspiration from underwater invertebrates like jellyfish to create an electronic skin with similar functionality.
Just like a jellyfish, the electronic skin is transparent, stretchable, touch-sensitive, and self-healing in aquatic environments. It can be used in everything from water-resistant touchscreens to aquatic soft robots.
The team, led by NUS Materials Science and Engineering Assistant Professor Benjamin Tee, worked with collaborators from Tsinghua University and the University of California Riverside spending just over a year to develop the material. Its invention was featured as the front cover of the journal Nature Electronics on 15 February 2019.
Asst Prof Tee has been working on electronic skins for many years and was part of the team that developed the first ever self-healing electronic skin sensors in 2012.
His experience in this research area led him to identify key obstacles that self-healing electronic skins have yet to overcome. “One of the challenges with many self-healing materials today is that they are not transparent and they do not work efficiently when wet,” he said. “These drawbacks make them less useful for electronic applications such as touchscreens which often need to be used in wet weather conditions.”
He continued, “With this idea in mind, we began to look at jellyfishes — they are transparent, and able to sense the wet environment. So, we wondered how we could make an artificial material that could mimic the water-resistant nature of jellyfishes and yet also be touch sensitive.”
They succeeded in this endeavour by creating a gel consisting of a fluorocarbon-based polymer with a fluorine-rich ionic liquid. When combined, the polymer network interacts with the ionic liquid via highly reversible ion–dipole interactions, which allows it to self-heal.
Elaborating on the advantages of this configuration, Asst Prof Tee explained, “Most conductive polymer gels such as hydrogels would swell when submerged in water or dry out over time in air. What makes our material different is that it can retain its shape in both wet and dry surroundings. It works well in sea water and even in acidic or alkaline environments.”
The electronic skin is created by printing the novel material into electronic circuits. As a soft and stretchable material, its electrical properties change when touched, pressed or strained. “We can then measure this change, and convert it into readable electrical signals to create a vast array of different sensor applications,” Asst Prof Tee added.
“The 3D printability of our material also shows potential in creating fully transparent circuit boards that could be used in robotic applications. We hope that this material can be used to develop various applications in emerging types of soft robots,” added Asst Prof Tee, who is also from the NUS Biomedical Institute for Global Health Research and Technology.
Soft robots, and soft electronics in general, aim to mimic biological tissues to make them more mechanically compliant for human-machine interactions. In addition to conventional soft robot applications, this novel material’s waterproof technology enables the design of amphibious robots and water-resistant electronics.
One further advantage of this self-healing electronic skin is the potential it has to reduce waste. Asst Prof Tee explained, “Millions of tonnes of electronic waste from devices like broken mobile phones, or tablets are generated globally every year. We are hoping to create a future where electronic devices made from intelligent materials can perform self-repair functions to reduce the amount of electronic waste in the world.”
Looking forward, Asst Prof Tee and his team are hoping to explore further possibilities of this material. He said, “Currently, we are making use of the comprehensive properties of the material to make novel optoelectronic devices, which could be utilised in many new human–machine communication interfaces.”
Suggested Items
DuPont Reports First Quarter 2025 Results
05/02/2025 | PRNewswireDuPont announced its financial results for the first quarter ended March 31, 2025.
'Chill Out' with TopLine’s President Martin Hart to Discuss Cold Electronics at SPWG 2025
05/02/2025 | TopLineBraided Solder Columns can withstand the rigors of deep space cold and cryogenic environments, and represent a robust new solution to challenges facing next generation large packages in electronics assembly.
Alternative Manufacturing Inc. (AMI) Appoints Gregory Picard New Business Development Manager
05/01/2025 | Alternative Manufacturing, Inc.Alternative Manufacturing Inc. (AMI) is pleased to announce the appointment of Mr. Gregory Picard as our new Business Development Manager. Picard brings a wealth of experience in Sales and Business Development, having worked with some of the most prominent names in the industry.
Indium Wins EM Asia Innovation Award
05/01/2025 | Indium CorporationIndium Corporation, a leading materials provider for the electronics assembly market, recently earned an Electronics Manufacturing (EM) Asia Innovation Award for its new high-reliability Durafuse® HR alloy for solder paste at Productronica China in Shanghai.
Discover the Future of AI in Test and Inspection in the May 2025 Issue of SMT007 Magazine
05/01/2025 | I-Connect007 Editorial TeamAre you ready to explore the cutting-edge advancements in AI shaping the electronics manufacturing industry through test and inspection? The May 2025 issue of SMT007 Magazine provides insights, innovations, and perspectives from today's top experts you won't find anywhere else.