Quantum Researchers Show Vast New Potential for Radar Technology
March 19, 2019 | University of WaterlooEstimated reading time: 2 minutes
Researchers at the Institute for Quantum Computing (IQC) performed the first demonstration of quantum-enhanced noise radar, opening the door to promising advancements in radar technology.
The researchers showed how the quantum process can outperform a classical version of the radar by a factor of 10, enabling the detection of objects that are faster, smaller, or further away – all while making the radar less detectable to targets.
“We are applying technology developed for quantum computing to immediate, practical situations,” said Christopher Wilson, a professor in the Department of Electrical and Computer Engineering at the University of Waterloo and principal investigator of the Engineered Quantum Systems Lab at IQC. “Our results show a promising improvement for radar, an important real-world application, using quantum illumination.”
Micrograph of the device used to generate the entangled microwave signals. Left inset: The measured correlations between the signals that prove they are entangled. Right inset: Cartoon of the radar protocol.
In the lab, Wilson’s team performed an experiment to directly compare the performance of a quantum protocol to a classical protocol. The researchers generated entangled photons using a device they designed to produce multiphoton entanglement of microwave light at frequencies near 5 GHz—the same frequency band as wireless communications used by cellphones and Wi-Fi connections.
Next, they created a classical source of photons that, on the surface, replicated the signals produced by the quantum device, but without the entanglement. When the photons from each source were sent through the detection scheme, in a head-to-head comparison between the quantum and classical protocols, the researchers found that the quantum source outperformed the classical source by a factor of 10.
They found that the improved performance occurred only when the signal levels were around the single-photon level, which is much weaker than what a typical radar system uses. While there are clear technical paths to improve the signal power, Wilson notes, “There is an enhancement when your signal power is inherently small, so this has potential applications in situations where the user doesn’t want the subject to know they are being tracked.”
The experiment marked a milestone as the first demonstration of quantum illumination in the microwave regime. “This is exciting because it is the same frequency that most radar systems operate at, meaning there could be more immediate, practical applications for current radar technology,” Wilson said.
Quantum-Enhanced Noise Radar, in collaboration with the Université de Sherbrooke and Defence Research and Development Canada (DRDC), appeared as the cover article of Applied Physics Letters on March 18. This research has been undertaken in part thanks to the Canada First Excellence Research Fund (CFREF).
Testimonial
"We’re proud to call I-Connect007 a trusted partner. Their innovative approach and industry insight made our podcast collaboration a success by connecting us with the right audience and delivering real results."
Julia McCaffrey - NCAB GroupSuggested Items
Argonne Expands Nation’s AI Infrastructure With Powerful New Supercomputers and Public-Private Partnerships
10/29/2025 | BUSINESS WIREThe U.S. Department of Energy (DOE), Argonne National Laboratory, NVIDIA and Oracle announced a landmark public-private partnership to deliver the DOE’s largest AI supercomputer and accelerate scientific discovery.
HPE Now Powers New AI-Ready Supercomputer Set to Transform Environmental Forecasting in New Zealand
09/22/2025 | BUSINESS WIREHPE announced that Earth Sciences New Zealand (formally NIWA) of Aotearoa (New Zealand) selected HPE Cray XD2000, purpose-built for AI and simulation workloads, to accelerate the organization’s environmental science and precision of meteorological forecasting.
PC Graphics Add-in Board Shipments Up 27% QoQ in 2Q25
09/03/2025 | Jon Peddie ResearchAccording to a new research report from the analyst firm Jon Peddie Research, the growth of the global PC-based graphics add-in board market reached 11.6 million units in Q2'25 and desktop PC CPUs shipments increased to 21.7 million units.
PC GPU Shipments Up 8.4% in 2Q25 on Pre-Tariff Demand
09/02/2025 | Jon Peddie ResearchJon Peddie Research reports the growth of the global PC-based graphics processor unit (GPU) market reached 74.7 million units in Q2'25, and PC CPU shipments increased to 66.9 million units.
20 Years of Center Nanoelectronic Technologies (CNT) – Backbone of German Semiconductor Research Celebrates Anniversary
08/14/2025 | Fraunhofer IPMSThe Center Nanoelectronic Technologies (CNT) of the Fraunhofer Institute for Photonic Microsystems (IPMS) is celebrating its 20th anniversary this year. Since its founding in 2005, it has developed into a pillar of applied semiconductor research in Germany and Europe. With its unique research cleanroom and equipment adhering to the 300-mm wafer industry standard, CNT is unparalleled in Germany and serves as a central innovation driver for the microelectronics industry.