New Argonne Supercomputer, Built for Next-Gen AI
March 19, 2019 | University of ChicagoEstimated reading time: 6 minutes
The exascale power of Aurora will help researchers rapidly test complex models involving millions of variables, while its optimization for artificial intelligence allows machine learning to automatically select and refine the best-performing strategies.
“The CANDLE team is excited to unleash Aurora’s full capability to help humanity in ways impossible before,” said Rick Stevens, associate laboratory director for computing, environment and life sciences at Argonne, professor of computer science at UChicago and principal investigator on CANDLE. “Chemotherapy has been available for about 75 years. However, we have never been able to predict effectively which patients will respond to it. Devising ways of incorporating molecular information and visual information to build more predictive models will help distinguish which tumors which will respond to a given drug and those that won’t. With exascale computing, we have a chance to do that, and that will change the lives of millions of people.”
Exploring Larger Spaces, from Atoms to Universes
Supercomputers are especially well suited for helping scientists explore and simulate enormous, data-rich environments—from atomic level processes to the history of the entire universe. Salman Habib, the director of Argonne’s Computational Science Division and Senior Member of the Kavli Institute for Cosmological Physics at the University of Chicago, has conducted some of the largest simulations of the universe ever performed on a supercomputer. With Aurora, he will be able to create even more detailed simulations that guide experimentalists towards the best places to find dark matter, dark energy and other mysteries of the universe.
“These include very realistic simulations of structure formation in the universe including gravitational and astrophysical effects—how the very smooth initial conditions in the far past transform into the lumpy matter distributions we see today,” Habib said. “Some simulations that took months will be performed in days, and more interestingly, some large and complex simulations that could not be done at all due to memory and performance limitations will become possible.”
“Some large and complex simulations that could not be done at all due to memory and performance limitations will become possible.”
Aurora will also stimulate efforts to design the technologies of tomorrow, pinpointing materials with the properties needed to build stronger batteries, solar panels that more efficiently convert light to energy, and quantum computers. Researchers will also be able to run more detailed molecular models than ever to understand the structure and function of cellular proteins, revealing new therapeutic targets and driving the development of precise drugs.
“I see this more as a qualitative breakthrough than just a timing breakthrough,” said Giulia Galli, the Liew Family Professor of Electronic Structure and Simulations in the Institute for Molecular Engineering and professor of chemistry at the University of Chicago. “The real breakthrough will come by the calculation of many properties of many materials at the same time—in a way we cannot do today—and that will finally enable design using computational, atomistic techniques.”
The Aurora contract is valued at over $500 million and the system will be delivered to Argonne National Laboratory by Intel and sub-contractor Cray Computing in 2021.
“We chose the name Aurora because it encompasses our aspirational goal to create a system which in some sense can illuminate the world,” Stevens said. “This marks a turning point in the history of supercomputing as artificial intelligence becomes integrated into traditional high-performance computing systems at the largest scale known to man.”
Page 2 of 2Suggested Items
Intervala Hosts Employee Car and Motorcycle Show, Benefit Nonprofits
08/27/2024 | IntervalaIntervala hosted an employee car and motorcycle show, aptly named the Vala-Cruise and it was a roaring success! Employees had the chance to show off their prized wheels, and it was incredible to see the variety and passion on display.
KIC Honored with IPC Recognition for 25 Years of Membership and Contributions to Electronics Manufacturing Industry
06/24/2024 | KICKIC, a renowned pioneer in thermal process and temperature measurement solutions for electronics manufacturing, is proud to announce that it has been recognized by IPC for 25 years of membership and significant contributions to electronics manufacturing.
Boeing Starliner Spacecraft Completes Successful Crewed Docking with International Space Station
06/07/2024 | BoeingNASA astronauts Barry "Butch" Wilmore and Sunita "Suni" Williams successfully docked Boeing's Starliner spacecraft to the International Space Station (ISS), about 26 hours after launching from Cape Canaveral Space Force Station.
KIC’s Miles Moreau to Present Profiling Basics and Best Practices at SMTA Wisconsin Chapter PCBA Profile Workshop
01/25/2024 | KICKIC, a renowned pioneer in thermal process and temperature measurement solutions for electronics manufacturing, announces that Miles Moreau, General Manager, will be a featured speaker at the SMTA Wisconsin Chapter In-Person PCBA Profile Workshop.
The Drive Toward UHDI and Substrates
09/20/2023 | I-Connect007 Editorial TeamPanasonic’s Darren Hitchcock spoke with the I-Connect007 Editorial Team on the complexities of moving toward ultra HDI manufacturing. As we learn in this conversation, the number of shifting constraints relative to traditional PCB fabrication is quite large and can sometimes conflict with each other.