Strong Performance, Complexities, and Puzzles in Intel's Optane DIMMs
March 20, 2019 | Jacobs School of EngineeringEstimated reading time: 3 minutes

University of California San Diego computer scientists have completed the first comprehensive evaluation of Intel’s new Intel Optane DC Persistent Memory Modules (Optane NVDIMMs).
They found that Optane DIMMs can make key storage applications 17 times faster, especially if system designers adapt their hardware and software to make the best use of the new technology. They also found that the DIMMs can significantly expand main memory capacity without sacrificing much performance and that they exhibit complex performance characteristics that designers must accommodate to fully exploit them.
Optane DIMMs aim to extend the memory capacity of servers while also preserving data across power failures--enabling order-of-magnitude increases in performance compared to conventional hard drives and solid-state drives (SSDs). The new memory (and similar technologies) have been in development for over a decade. The official release of the memory has been eagerly anticipated by researchers and potential customers like Google, Facebook, Amazon and other companies that require enormous memory capacity and storage performance.
UC San Diego’s Non-Volatile Systems Laboratory (NVSL), led by Steven Swanson and Jishen Zhao, both computer scientists at the Jacobs School of Engineering at UC San Diego, worked with Intel to get early access to two high-performance servers equipped with multiple Optane DIMMs. Over the past several months, they, along with post-doctoral fellow Joe Izraelevitz, have put the Optane DIMMs through their paces and measured their basic performance characteristics and their overall impact on important software systems that power many of the cloud-based services that we all use every day.
“It’s been really exciting to finally have first-hand access to this memory. For a long time, researchers (including my group) have made predictions about how this technology would perform. We’ve proposed systems based on those predictions, and now we get to see how they really perform,” said Swanson.
The researchers used two machines provided by Intel to evaluate the Optane DIMMs’ performance. They measured basic performance numbers, including latency and bandwidth of reads and writes under a range of conditions. They uncovered a range of exciting results. “This memory is a new animal,” said Swanson, a professor in the UC San Diego Department of Computer Science and Engineering. “It is going to take a while for researchers, application developers, and system designers to understand its complexities and develop intuition about how it behaves.”
To understand how the underlying technology characteristics translate into application-level performance, researchers tested the memory on a wide range of applications used in cloud-based applications including MySQL, LMDB, RocksDB, MongoDB, Memcached, and Redis. One particularly exciting result is that Optane DIMMs can speed up some applications by up to 128 times compared to flash-based SSDs, the current workhorse of data center storage. Overall, the impact of the new memories varied between applications, and understanding the root cause of the differences will require more study.
“With a large variety of data-intensive applications -- across big-data analytics, media processing, and computer vision domains -- we also investigated the underlying software and hardware behaviors of computer systems with Optane DIMMs, traditional DRAMs, and DRAM-cached Optane DIMMs,” said Zhao, who is an assistant professor in the computer science department at UC San Diego.
Swanson and his research group have been studying emerging memory technologies like the Optane DIMMs for over a decade. The Non-Volatile Systems Laboratory developed some of the earliest software for managing and using such memories in 2011 and built a prototype SSD based on a precursor to the Optane memory chips in the same year. More recently the NVSL has released a high-performance file system called NOVA built specifically for Optane DIMM-like memories. Zhao has worked on computer architecture support for non-volatile memory systems at UC Santa Cruz and HP Labs and joined the group earlier this year.
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
EV Group Achieves Breakthrough in Hybrid Bonding Overlay Control for Chiplet Integration
09/12/2025 | EV GroupEV Group (EVG), a leading provider of innovative process solutions and expertise serving leading-edge and future semiconductor designs and chip integration schemes, today unveiled the EVG®40 D2W—the first dedicated die-to-wafer overlay metrology platform to deliver 100 percent die overlay measurement on 300-mm wafers at high precision and speeds needed for production environments. With up to 15X higher throughput than EVG’s industry benchmark EVG®40 NT2 system designed for hybrid wafer bonding metrology, the new EVG40 D2W enables chipmakers to verify die placement accuracy and take rapid corrective action, improving process control and yield in high-volume manufacturing (HVM).
United Electronics Corporation Unveils Revolutionary CIMS Galaxy 30 Automated Optical Inspection System
09/11/2025 | United Electronics CorporationUnited Electronics Corporation (UEC) today announced the launch of its new groundbreaking CIMS Galaxy 30 Automated Optical Inspection (AOI) machine, setting a new industry standard for precision electronics manufacturing quality control. The Galaxy 30, developed and manufactured by CIMS, represents a significant leap forward in inspection technology, delivering exceptional speed improvements and introducing cutting-edge artificial intelligence capabilities.
IPS, SEL Raise the Bar for ENIG Automation in North America
09/11/2025 | Mike Brask, IPSIPS has installed a state-of-the-art automated ENIG plating line at Schweitzer Engineering Laboratories’ PCB facility in Moscow, Idaho. The 81-foot, fully enclosed line sets a new standard for automation, safety, and efficiency in North American PCB manufacturing and represents one of the largest fully enclosed final finish lines in operation.
Smart Automation: Odd-form Assembly—Dedicated Insertion Equipment Matters
09/09/2025 | Josh Casper -- Column: Smart AutomationLarge, irregular, or mechanically unique parts, often referred to as odd-form components, have never truly disappeared from electronics manufacturing. While many in the industry have been pursuing miniaturization, faster placement speeds, and higher-density PCBs, certain market sectors are moving in the opposite direction.
U.S. Army Begins Fielding BAE Systems’ Mission-critical Software-defined Radios Across Rotary-wing Aviation Fleet
09/08/2025 | BAE SystemsBAE Systems’ AN/ARC-231A Multi-mode Aviation Radio Set (MARS) has completed initial installation and is operationally ready for use today on select U.S. Army rotary-wing aircraft.