The Future of Stretchable Electronics
March 25, 2019 | ACN NewswireEstimated reading time: 2 minutes
Stretchable electronics is emerging as a promising new technology for next-generation wearable devices, according to a review published in Science and Technology of Advanced Materials.
Figure 1: A wide range of stretchable electronic devices are being investigated, including this thin-film transistor matrix, showed relaxed (L) and stretched to about 60% (R). The transistor parameters remain almost unchanged upon stretching up to 140%. (Credit: Matsuhisa, N. et al. Nature Communications. 25 July 2015/Creative Commons)
Figure 2: This solar cell can be stretched (L) or twisted (R) without performance degradation. (Credit: Nam, J. et al. Scientific Reports. 8 Aug. 2017/Creative Commons)
The technology has many possible applications for healthcare, energy and the military. But there are several challenges involved in finding suitable materials and manufacturing methods. The biggest challenge for making stretchable electronics is that each component must endure being compressed, twisted and applied to uneven surfaces while maintaining performance, according to the review author Wei Wu, materials scientist at Wuhan University, China.
Many different stretchable electronic components are being developed. For instance, low-cost stretchable conductors and electrodes are being made from silver nanowires and graphene. An urgent technical problem is the need for stretchable energy conversion and storage devices, such as batteries. Zinc-based batteries are promising candidates; however, more work is required to make them commercially viable.
An alternative to batteries is stretchable nanogenerators, which can produce electricity from various freely available vibrations, such as wind or human body movements. Stretchable solar cells could also be used to power wearable electronic devices.
By integrating multiple stretchable components, such as temperature, pressure and electrochemical sensors, it is possible to create a material resembling human skin that could use signals from sweat, tears or saliva for real-time, non-invasive healthcare monitoring, as well as for smart prosthetics or robots with enhanced sense capabilities. However, at present, fabrication of artificial skin remains time-consuming and complex.
Currently there are two main strategies for manufacturing stretchable electronics. The first is to use intrinsically stretchable materials, such as rubber, which can endure large deformations. However, these materials have limitations, such as high electrical resistance.
The second method is to make non-flexible materials stretchable using innovative design. For example, brittle semiconductor materials like silicon can be grown on a pre-stretched surface and then allowed to compress, creating buckling waves. Another strategy involves linking 'islands' of rigid conductive materials together using flexible interconnections, such as soft or liquid metals. Origami-inspired folding techniques can be used to make foldable electronic devices. In the future, stretchable electronics may be enhanced with new capabilities, such as wireless communication, self-charging or even self-healing.
The next step after laboratory tests is to bring stretchable electronic devices to market. This requires cheaper materials and faster, scalable manufacturing methods, concludes the review author.
Suggested Items
Subdued Electronics Industry Sentiment Continues in November
11/25/2024 | IPCIPC releases November 2024 Global Sentiment of the Electronics Manufacturing Supply Chain report
NEOTech Significantly Improves Wire Bond Pull Test Process
11/25/2024 | NEOTechNEOTech, a leading provider of electronic manufacturing services (EMS), design engineering, and supply chain solutions in the high-tech industrial, medical device, and aerospace/defense markets, proudly announces a major advancement in its wire bond pull testing process, reducing manufacturing cycle time by more than 60% while maintaining industry-leading production yields of over 99.99%.
PCB Design Software Market Expected to Hit $9.2B by 2031
11/21/2024 | openPRThis report provides an overview of the PCB design software market, detailing key market drivers, challenges, technological advancements, regional dynamics, and future trends. With a projected compound annual growth rate (CAGR) of 13.4% from 2024 to 2031, the market is expected to grow from USD 3.9 billion in 2024 to USD 9.2 billion by 2031.
IPC Issues Clarion Call for EU to Reclaim Leadership in Electronics Manufacturing
11/21/2024 | IPCIPC released a synopsis of its recent white paper, Securing the European Union’s Electronics Ecosystem. This condensed document presents a comprehensive overview of the current challenges in Europe’s electronics manufacturing industry and shares actionable steps to help the EU achieve a stronger, more autonomous ecosystem.
IPC Celebrates National Apprenticeship Week with a Focus on Electronics Manufacturing Excellence
11/19/2024 | IPCIPC, a leading global electronics industry association and source for industry standards, training and advocacy, is proud to announce its participation in National Apprenticeship Week, scheduled for November 17-23, 2024.