Optimizing the Energy Production of Photovoltaic Panels Using Artificial Intelligence
March 25, 2019 | Universidad Politécnica de MadridEstimated reading time: 2 minutes

Researchers from Universidad Politécnica de Madrid and the Spanish National Research Council have developed a method based on artificial intelligence techniques that consider the atmospheric variations when designing the solar cells to produce more energy.
By using a statistical technique and artificial intelligence, which is known as clustering, researchers from Solar Energy Institute at Universidad Politécnica de Madrid (IES - UPM) and from Institute of Micro and Nanotechnology at Spanish National Research Council (IMN-CSIC) have found a practical way to include in their calculations all the changes given in the solar spectrum to predict the production of photovoltaic solar energy.
The study, published in Nature Communications, allows us to find, in a few hours of calculating, the optimal design of multi-junction solar cells for each location.
Throughout the day and the seasons of the year, the sun position and the atmospheric conditions change and thus the sunlight that reaches the photovoltaic panels have different characteristics. The most relevant change occurs in the spectral content of light which consists in the distribution of colors of light. For example, the light is bluer at midday and redder in the afternoon.
The future solar panels will be multi-junction and combine various materials to take advantage of the light spectrum. However, the production of energy of multi-junction panels depends to some extent on the color change of the sunlight.
For this reason, these panels are manufactured to produce the maximum energy for a certain color of the sunlight, and thus the changes produced by the sun position and the atmospheric conditions cause production losses. In order to reduce these losses, researchers have designed a panel with an optimal production of global energy that it solves the problem of the sunlight colors. However, due to the infinite variety of atmospheric conditions combined with the diverse sun positions, this optimization is very complex.
The work carried out by the Spanish researchers has shown that data sets with thousands of solar spectra can be reduced to a few characteristic proxy spectra using machine learning techniques, and successfully use these proxy spectra to predict the yearly averaged efficiency as a function of the solar cell design.
Iván García Vara (IES - UPM) came up with the initial idea during his stay in the National Renewable Energy Laboratory. He developed a statistical method to conduct this type of calculation. Later, Jose María Ripalda Cobián y Jeronimo Buencuerpo Fariña (IMN - CSIC) applied the clustering technique to the previous method to achieve a successful result. Iván García Vara points out, “The final result of our work project was the optimization of the design of multi-junction solar panels using the yearly energy production as a criterion.”
Suggested Items
Lockheed Martin, Fujitsu Strengthen Japan Industry Collaboration with SPY-7 Supplier Selection and Strategic Agreements
05/23/2025 | JCN NewswireLockheed Martin, a global leader in the development and delivery of cutting-edge radar solutions, and Fujitsu Limited, a Japanese multinational leader in information and communications technology and digital services, announced the conclusion of a Memorandum of Understanding (MOU) establishing Fujitsu as a source for the SPY-7 Subarray Suite Power Supply Line Replaceable Unit (PS LRU). Purchase orders in support of the Aegis System EquippedVessel program are anticipated later in 2025.
Incap UK Invests in SMT Technology as Part of Long-Term Operational Development
05/23/2025 | IncapIncap Electronics UK has completed the second phase of SMT (surface-mount technology) production lines upgrade at its facility in Newcastle-under-Lyme.
ASMPT Presents Central Platform for Data Exchange in Electronics Manufacturing
05/21/2025 | ASMPTWith WORKS Integration, ASMPT SMT Solutions, the market and technology leader in SMT, provides a central integration platform through which all its hardware and software solutions can communicate with each other.
50 Years of productronica: World’s Leading Trade Fair Celebrates Anniversary
05/21/2025 | productronicaWhen productronica takes place in Munich from November 18 to 21, 2025, a milestone birthday will be on the agenda. The world’s leading trade fair for the development and production of electronics is celebrating its 50th anniversary.
MVTec Presents Advantages of Machine Vision for Battery Production
05/16/2025 | MVTecMVTec Software GmbH, a leading international manufacturer of machine vision software, will once again demonstrate the added value of machine vision for battery production at this year's Battery Show Europe in Stuttgart.