Fullerenes Bridge Conductive Gap in Organic Photovoltaics
March 29, 2019 | WileyEstimated reading time: 2 minutes

Organic photovoltaics have achieved remarkably high efficiencies, but finding optimum combinations of materials for high-performance organic solar cells, which are also economically competitive, still presents a challenge. Researchers from the United States and China have now developed an innovative interlayer material to improve device stability and electrode performance.
Image Caption: Transforming Ionene Polymers into Efficient Cathode Interlayers with Pendent Fullerenes
In the journal Angewandte Chemie ("Transforming Ionene Polymers into Efficient Cathode Interlayers with Pendent Fullerenes"), the authors describe their fullerene-spiked, readily processable ionene polymer, which boosts the power conversion efficiency of organic solar cells.
In contrast to common silicon-based solar cells, organic photovoltaics (OPVs) involve organic molecules in solar power generation. Materials in OPVs are abundant and processable, cheap and lightweight, and the modules can be made flexible and with tunable properties. The major disadvantage of such materials is that achieving longevity and high performance requires elaborate settings and architectures. Optimized combinations of materials that match the electrodes remain elusive.
Silver or gold metals form air-stable, processable cathodes, but they also lower the device potential. To overcome this problem, Yao Lui at Beijing University of Chemical Technology (China), and Thomas Russell and Todd Emrick at the University of Massachusetts, Amherst (USA), and their research groups, have developed a novel polymeric material to serve as an interlayer between the electrode and the active layer. This interlayer must be conductive and must lower the work function of the cathode by providing an interfacial dipole.
As an interlayer material, the researchers investigated a novel class of charged polymers, the ionene polymers. “Ionene polymers are polycations in which the charged moieties are positioned within the polymer backbone rather than as pendant groups,” the authors explain. This leads to a higher charge distribution than in conventional cationic polymers, and in addition, better tunability. Ionene polymers provide a useful interfacial dipole, but alone, they lack the required conductivity.
Therefore, the authors included fullerenes in the structural framework of the polymer layer. So-called “bucky balls”—fullerene spheres made solely from carbon—are already used as common acceptor molecules in OPV devices. They are highly conductive and have many other favorable properties.
The scientists prepared the fullerene–ionene interlayer material by innovating on conventional step-growth polymerization chemistry with novel, functional monomers. They assembled the OPV devices and included an interlayer. The result was an impressive boost in power conversion efficiency—on average three-fold—when compared to devices without the interlayer. Efficiencies of over 10% point to further applicability of these modular devices.
This work shows that a relatively simple modification to the composition of materials can improve the efficiency in organic electronics and can overcome intrinsic problems related to the combination of hard (electrodes) and soft (active-layered) materials.
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
Fresh PCB Concepts: Designing for Success at the Rigid-flex Transition Area
08/28/2025 | Team NCAB -- Column: Fresh PCB ConceptsRigid-flex PCBs come in all shapes and sizes. Manufacturers typically use fire-retardant, grade 4 (FR-4) materials in the rigid section and flexible polyimide materials in the flex region. Because of the small size, some rigid-flex PCBs, like those for hearing aid devices, are among the most challenging to manufacture. However, regardless of its size, we should not neglect the transition area between the rigid and flexible material.
Global Sourcing Spotlight: How to Evaluate Supplier Capabilities Worldwide
08/20/2025 | Bob Duke -- Column: Global Sourcing SpotlightIn global sourcing, the difference between a competitive edge and a catastrophic disruption often comes down to how well you vet your suppliers. Sourcing advanced PCBs, precision components, or materials for complex assemblies demands diligence, skepticism, and more than a little time on airplanes. Here’s how to do your due diligence when evaluating international suppliers and why cutting corners can cost you more than money.
Insulectro and Electroninks Sign North American Distribution Agreement
08/12/2025 | InsulectroElectroninks, a leader in metal organic decomposition (MOD) inks for additive manufacturing and advanced semiconductor packaging, today announced a strategic collaboration and distribution partnership with Insulectro, a premier distributor of materials used in printed electronics and advanced interconnect manufacturing.
Happy’s Tech Talk #41: Sustainability and Circularity for Electronics Manufacturing
08/13/2025 | Happy Holden -- Column: Happy’s Tech TalkI attended INEMI’s June 12 online seminar, “Sustainable Electronics Tech Topic Series: PCBs and Sustainability.” Dr. Maarten Cauwe of imec spoke on “Life Cycle Inventory (LCI) Models for Assessing and Improving the Environmental Impact of PCB Assemblies,” and Jack Herring of Jiva Materials Ltd. spoke on “Transforming Electronics with Recyclable PCB Technology.” This column will review information and provide analysis from both presentations.
Dymax Renews Connecticut Headquarters Lease, Reinforces Long-Term Commitment to Local Community
08/08/2025 | DymaxDymax, a global manufacturer of rapid light-curing materials and equipment, is pleased to announce the renewal and extension of its corporate lease at its 318 Industrial Lane, Torrington, headquarters.